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INTRODUCTION: Mammalian gene expres-

sion is tightly controlled through the inter-

play between the RNA and protein life cycles.

Although studies of individual genes have

shown that regulation of each of these pro-

cesses is important for correct protein ex-

pression, the quantitative contribution of each

step to changes in protein expression levels

remains largely unknown andmuch debated.

Many studies have attempted to address this

question in the context of steady-state protein

levels, and comparing steady-state RNA and

protein abundances has indicated a consid-

erable discrepancy between RNA and protein

levels. In contrast, only a few studies have at-

tempted to shed light on how changes in each

of these processes determine differential pro-

tein expression—either relative (ratios) or ab-

solute (differences)—during dynamic responses,

and only one recent report has attempted to

quantitate each process. Understanding these

contributions to a dynamic response on a sys-

tems scale is essential both for deciphering

how cells deploy regulatory processes to ac-

complish physiological changes and for dis-

covering key molecular regulators controlling

each process.

RATIONALE: We developed an integrated

experimental and computational strategy

to quantitatively assess how protein levels

are maintained in the context of a dynam-

ic response and applied it to the model

response of mouse immune bone marrow–

derived dendritic cells (DCs) to stimulation

with lipopolysaccharide (LPS). We used a

modified pulsed-SILAC (stable isotope label-

ing with amino acids in cell culture) approach

to track newly synthesized and previously

labeled proteins over the first 12 hours of

the response. In addition, we independently

measured replicate RNA-sequencing pro-

files under the same conditions. We devised

a computational strategy to infer per-mRNA

translation rates and protein degradation

rates at each time point from the temporal

transcriptional profiles and pulsed-SILAC

proteomics data. This allowed us to build a

genome-scale quantitative model of the tem-

poral dynamics of differential protein expres-

sion in DCs responding to LPS.

RESULTS: We found that before stimulation,

mRNA levels contribute to overall protein ex-

pression levels more than double the com-

bined contribution of protein translation and

degradation rates. Upon

LPS stimulation, changes

in mRNA abundance play

an even more dominant

role in dynamic changes

in protein levels, especial-

ly in immune response

genes. Nevertheless, several protein modules—

especially the preexisting proteome of pro-

teins performing basic cellular functions—are

predominantly regulated in stimulated cells

at the level of protein translation or degrada-

tion, accounting for over half of the absolute

change in protein molecules in the cell. In

particular, despite the repression of their tran-

scripts, the level of many proteins in the trans-

lational machinery is up-regulated upon LPS

stimulation because of significantly increased

translation rates, and elevated protein deg-

radation of mitochondrial proteins plays a

central role in remodeling cellular energy

metabolism.

CONCLUSIONS:Our results support a mod-

el in which the induction of novel cellular

functions is primarily driven through tran-

scriptional changes, whereas regulation of

protein production or degradation updates

the levels of preexisting functions as re-

quired for an activated state. Our approach

for building quantitative genome-scale mod-

els of the temporal dynamics of protein

expression is broadly applicable to other dy-

namic systems.▪
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Dynamic protein expression regulation in dendritic cells upon stimulation with LPS. We

developed an integrated experimental and computational strategy to quantitatively assess how

protein levels are maintained in the context of a dynamic response. Our results support a model

in which the induction of novel cellular functions is primarily driven through transcriptional

changes, whereas regulation of protein production or degradation updates the levels of pre-

existing functions.
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Protein expression is regulated by the production and degradation of messenger RNAs

(mRNAs) and proteins, but their specific relationships remain unknown. We combine

measurements of protein production and degradation and mRNA dynamics so as to

build a quantitative genomic model of the differential regulation of gene expression in

lipopolysaccharide-stimulated mouse dendritic cells. Changes in mRNA abundance play a

dominant role in determining most dynamic fold changes in protein levels. Conversely,

the preexisting proteome of proteins performing basic cellular functions is remodeled

primarily through changes in protein production or degradation, accounting for more

than half of the absolute change in protein molecules in the cell. Thus, the proteome is

regulated by transcriptional induction for newly activated cellular functions and by

protein life-cycle changes for remodeling of preexisting functions.

M
ammalian gene expression is tightly con-

trolled through the interplay between

the RNA and protein life cycles (Fig. 1A).

Although studies of individual genes have

shown the importance of regulating each

of these processes for correct protein expression

(1–4), the quantitative contribution of each pro-

cess to changes in protein expression levels (Fig.

1A) remains largely unknown andmuch debated

(5, 6). Many studies have attempted to address

this question in the context of steady-state protein

levels (5, 7–13), and comparing steady-statemRNA

and protein abundances has indicated a consid-

erable discrepancy between mRNA and protein

levels (5, 7–13). Furthermore, protein expression

is more conserved across species than is mRNA

expression (11, 14, 15), both suggesting a substantial

contribution of the protein life cycle. A recent

study using metabolic pulse labeling of proteins

andmRNAinanasynchronouslyproliferatingmam-

malian cell line (16) concluded that gene-to-gene

differences in protein synthesis rates contributed

most to final protein levels (~55%), followed by

mRNA abundance (40%), whereas degradation

of mRNA and protein played only minor roles.

However, reanalysis of this data challenged some

of these conclusions, arguing that the contribu-

tion of mRNA levels could be as high as 84% and

that of protein synthesis as low as 8% (6).

In contrast, only a few studies (5, 12, 17–20)

have attempted to shed light on how changes in

each of these processes determine differential

protein expression—either relative (ratios) or ab-

solute (differences)—during dynamic responses,

and only one recent report (20) has attempted to

quantitate each process. However, none of these

has comprehensively accounted for experimental

measurement errors, nor have they deconvolved

interdependencies of the data. Understanding

these contributions to a dynamic response on a

systems scale is essential both for deciphering

how cells deploy regulatory processes to accom-

plish physiological changes and for discovering

keymolecular regulators controlling each process.

Results

A pulsed-SILAC strategy to measure

protein dynamics

We assessed how protein levels are maintained

in the context of the model response of mouse

immune bone marrow–derived dendritic cells

(DCs) (21) to stimulation with lipopolysaccharide

(LPS) (22–26). This is a compelling systembecause

DCs are mostly postmitotic, and LPS synchronizes

them (27) and causes dramatic regulatory changes

from the expression of thousands of transcripts

(22, 24, 25) to protein phosphorylation (26). To

monitor protein production and degradation

during a dynamic response, we used a modified

pulsed-SILAC (stable isotope labeling with amino

acids in cell culture) approach (Fig. 1B) (28, 29) to

track newly synthesized and previously labeled

proteins over time.We cultured DCs for 9 days in

medium-heavy–labeled (M) SILACmedium then

substituted the M SILAC medium with heavy-

labeled (H) SILAC medium and immediately

stimulated themwith LPS or medium (MOCK).

Newly synthesized proteins were thus labeled

with heavy (H) amino acids, serving as a proxy for

protein synthesis, whereas proteins withmedium-

heavy (M) amino acids decayed over time, reflect-

ing cellular half lives. For normalization,we spiked

in a reference sample, extracted from a mix of

unstimulated and stimulated DCs grown in light

(L) SILAC media. We collected biological repli-

cate samples at 10 time points over 12 hours (0,

0.5, 1, 2, 3, 4, 5, 6, 9, and 12 hours) after LPS or

mock stimulation. We quantified 6079 proteins

bymeans of liquid chromatography–tandemmass

spectrometry (LC-MS/MS) in at least one sample

and 2288 proteins in all samples (time points, con-

ditions, and replicates) (Fig. 2A and table S1). We

independentlymeasured replicateRNA-sequencing

(RNA-Seq) profiles under the same conditions

(Fig. 2A and table S2) (29).

A model-based estimation of protein

synthesis and degradation rates

Wedevised a computational strategy to infer per-

mRNA translation rates [T(t)] and protein degra-

dation rates [D(t)] at each time point from the

temporal transcriptional profiles [R(t)] and H/L

and M/L protein ratios [H(t) and M(t), respec-

tively] (Fig. 1B and fig. S1) (29). We defined a

model that describes the relevant processes and

associated rates (such as translation rate and pro-

tein degradation rate) and then fitted the param-

eters (such as rates) in the model with our mRNA

and protein data. Specifically, we used an ordi-

nary differential equations model describing, for

each gene i, the changes inMi(t) andHi(t) [dMi(t)/dt

and dHi(t)/dt, respectively] as a function of (i) a

production term, governed bymRNA abundance

Ri(t) and a per-mRNA molecule translation rate

constant, Ti(t); and (ii) a degradation term, mod-

eled as an exponential decay function, governed

by a protein degradation rate constant, Di(t). Both

terms are also affected by g(t), the global M SILAC

label recycling rate (figs. S1 and S2) (29). All rate

constants are dynamic, and the mRNA levels,

per-mRNA translation rate constant, and protein

degradation rate constant are also gene-specific.

We modeled the change over time in the per-

mRNA translation rate constant [Ti(t)] and in the

degradation rate constant ([Di(t)] as linear func-

tions. This assumption reduces the number of

free parameters, thus providing robustness while

retaining the capacity to detect the effect of sus-

tained changes, even if these changes do not

manifest linearly in vivo (as in the case of step

functions).

RESEARCH

SCIENCE sciencemag.org 6 MARCH 2015 • VOL 347 ISSUE 6226 1259038-1

1The Broad Institute of MIT and Harvard, Cambridge, MA
02142, USA. 2Division of Health Sciences and Technology,
Massachusetts Institute of Technology, Cambridge, MA
02139, USA. 3Harvard Faculty of Arts and Sciences Center
for Systems Biology, Harvard University, Cambridge, MA
02138, USA. 4Department of Cellular and Molecular
Pharmacology, California Institute for Quantitative Biomedical
Research, University of California, San Francisco, San Francisco,
CA 94158, USA. 5Center for Immunology and Inflammatory
Diseases, Massachusetts General Hospital, Boston, MA 02114,
USA. 6Howard Hughes Medical Institute (HHMI), University of
California, San Francisco, San Francisco, CA 94158, USA.
7Harvard Medical School, Boston, MA 02115, USA. 8Department
of Biology, Massachusetts Institute of Technology, Cambridge,
MA 02140, USA. 9HHMI, Department of Biology, Massachusetts
Institute of Technology, Cambridge, MA 02140, USA.
*These authors contributed equally to the work. †Present address:

New York Genome Center, New York, NY 10013, USA. ‡Present

address: Center for Genomics and Systems Biology, New York

University, New York, NY 10012, USA. §Present address: Department

of Molecular and Cellular Biology, Harvard University, Cambridge, MA

02138, USA. ||Corresponding author. E-mail: aregev@broad.mit.edu

(A.R.); nhacohen@mgh.harvard.edu (N.H.)

D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://w
w

w
.scien

ce.o
rg

 o
n
 Jan

u
ary

 1
9
, 2

0
2
4



We fitted the different parameters in themodel

(fig. S1) with the RNA-Seq andMS data (29) using

an empirical Bayes strategy (29), which prevents

overfitting of noisy MS data by sharing infor-

mation across genes. In this approach, our most

differential and reliable parameter estimates cor-

respond to the well-quantified genes (29), whereas

proteins with less reliable measurements are not

associated with reliable changes. This ensures a

low rate of false positives (calling a changewhere

none exists) butmay result in false negatives and,

hence, in some underestimation of the contribu-

tion of protein synthesis and degradation.

Fitting the parameters for 3147 genes that

passed our filtering criteria (29), separately for

each of our replicates (Fig. 2B, fig. S3, and table

S3), we found good reproducibility of the LPS/

MOCK ratios of key fitted values (Fig. 2B and

fig. S4) and of the relative differences in per-

mRNA translation rates [for example, DTi(12h) =

Ti(12h)LPS/Ti(12h)MOCK, Pearson correlation coef-

ficient (r) = 0.68] (fig. S5A) or degradation rates

[for example, DDi(12h) =Di(12h)LPS/Di(12h)MOCK,

r = 0.62] (fig. S5B). The robustness of these

results was further supported by (i) the fair cor-

relation of our translation and protein degrada-

tion rate estimates in resting cells (table S3 and

fig. S6, A and B) with previous estimates in

mouse fibroblasts (NIH3T3) based on a similar

pulsed-SILAC approach {r[Ti(0)] = 0.35; r[Di(0)] =

0.58} (fig. S7) (16) or on estimates of translation

rate efficiency (TE) values based on ribosome pro-

filing in mouse fibroblasts (NIH3T3) {r[Ti(0)] =

0.37} (fig. S7C) (30); (ii) a good correlation be-

tween our per-mRNA translation rates and our

independent measurement of TE values in DCs

using ribosome profiling at time (t) = 0 hours (r=

0.5) (table S4) (fig. S8A), which is comparable

with the correlation between TE values inmouse

DCs and mouse fibroblasts (r = 0.54) (fig. S8B);

(iii) that strong early changes are all in immune

response proteins (fig. S4A); (iv) the global in-

crease upon LPS stimulation in protein produc-

tion rates [Ti(12h)LPS versus Ti(12h)MOCK; P < 10
−10

,

Wilcoxon rank sum test] (fig. S9A) and protein

degradation rates [Di(12h)LPS versus Di(12h)MOCK;

P < 10
−10

, Wilcoxon rank sum test] (fig. S9B),

which is consistent with other reports (31, 32);

and (v) the increase in the calculated “degrada-

tion rate”—likely reflecting depletion by secre-

tion, or “decreased cellular half-life”—of proteins

from the recently characterized secretome of

LPS-stimulated mouse macrophages [dDi(12h) =

Di(12h)LPS/Di(12h)MOCK; P < 10
−10
, Wilcoxon rank

sum test] (fig. S9C) (33).

mRNA levels contribute the most

to protein expression levels

before stimulation

To determine the relative contribution of each

step to steady-state protein levels in unstimulated,

postmitotic DCs, we first estimated absolute pro-

tein levels from four additional MS data sets in

resting DCs (0 hours) that rely on distinct peptides

(29): two biological replicate samples, which were

each digested in two technical replicateswith LysN

andAspN, respectively, rather thanby trypsin,which

was used for the pulsed SILAC samples (29).

Next, we assessed the contribution of each reg-

ulatory step to gene-to-gene differences in overall

protein levels by comparing (with Spearman-

corrected coefficients of determination) (29) the

independently measured absolute protein levels

to steady-state protein levels predicted by our

model when setting one or more of the three

regulatory steps (mRNA level, per-mRNA transla-

tion rate constant, or protein degradation rate

constant) to its per-gene inferred value (at time

0 hours) and setting the remaining steps to their

pan-genome median value (29). By sequentially

adding to themodel further per-gene values rather

than pan-genome medians (such as mRNA level,

translation rate, and last, degradation rate) and as-

sessing the corresponding change in the correlation

measure, we can assign additive regulatory contri-

butions to the three steps (29). Because these three

steps are not statistically independent from each

other andmay interact in a nonlinearmanner, we

explored every possible ordering of consideration.

Considering all three variables together, we

account for nearly 79% of the variance of the

independently measured protein levels (figs. S10

and S11A) (29). Of these 79%,mRNA levels explained

59 to 68%, per-mRNA translation rates 18 to 26%,

and protein degradation rates 8 to 22% (Fig. 3A

and fig. S11A) (29). We believe the unexplained

variance is due to systematic errors in themeasure-

ments and modeling that could not be accounted

for. In addition, we have separately estimated

the variance in translation rates in the same cells

under identical conditions using ribosome profil-

ing to measure TE values [above and (29)]. Using
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Fig. 1. Framework to study the dynamic protein life cycle. (A) The dynamic protein life

cycle. (Top) RNA transcription, processing, and degradation (dashed gray box) determine

mRNA levels (red), which together with per-mRNA translation (tan) and protein degradation/

removal (turquoise) determine final protein levels. (Bottom) Hypothetical contribution of each

process (stacked chart) to protein levels at steady state (left) or to fold changes (right, three

hypothetical scenarios). (B) Experimental and analysis workflow. From top to bottom: ex-

perimental system (“Experiment”) consisted of DCs grown in medium-heavy SILAC (M)

medium until LPS (top) or MOCK (bottom) stimulation, when heavy (H) SILAC is substituted.

A“standard,” light (L) SILAC labeled sample is spiked in.The resultingmeasurements (“Data”)

include M/L and H/L ratios (proxies for protein degradation/removal and production,

respectively), as well as RNA-Seq data at each time point.These are used to fit the parameters

of an ordinary differential equation model (“Analysis”), where R(t) = modeled mRNA change

over time; T(t) and D(t) = per-mRNA translation and protein degradation rate constants over

time, respectively; γ(t) = recycling (“impurity”) rate; and H(t) and M(t) = modeled change in

heavy (H/L) and medium (M/L) channels, respectively.The result (“Model”) are the estimated

per-mRNA translation and degradation rates over time. Details are provided in the text and (29).
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Fig. 2. The protein life cycle in LPS-stimulated DCs. (A) Shown are (left to

right), for all 2288 genes (rows) that were quantified in all samples, mRNA ex-

pression, H/L protein expression, and M/L protein expression in LPS- and MOCK-

stimulated DCs from each replicate (columns). Gene order is the same across all

heatmapsanddeterminedbymeans of hierarchical clusteringof fitted fold changes

inmRNA level, translation rate, and degradation rate.Values aremedian normalized

by row, logged, and robust z-transformed per map (color scale). (B) Fitted dif-

ferential expression of the same 2288 genes (rows). Left to right: Robust z-score

fitted differential expression ratios (LPS/MOCK; red/blue color scale) for R(t), H(t),

andM(t) in LPS- versusMOCK-stimulatedDCs from each replicate (columns),with

the log2 fold changes between LPS- and MOCK-stimulated DCs at 12 hours after

stimulation for mRNA (DR), per-mRNA translation rate (DTr), and protein degra-

dation rate (DDeg) (also z-scored). Rightmost column, immune response (purple),

ribosomal (green), and mitochondrial (orange) proteins.
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TE values instead of our pulsed-SILAC derived

translation rates, we estimate a comparable con-

tribution of protein synthesis (Fig. 3B and fig. S10).

Thus, in postmitotic DCs,mRNA levels are contrib-

uting more to protein-to-protein variation in total

protein levels than is theprotein life cycle (synthe-

sis and degradation rates combined).

mRNA abundance dynamics dominate

protein changes after stimulation

Next, we determined the contribution of each

regulatory step to protein fold changes at 12 hours.

We used the model fit from a given replicate to

predict the protein fold change at 12 hours, when

using eitherMOCK-estimated parameters or one

or more LPS-estimated parameters for mRNA

level, translation rate, and degradation rate.

We then compared these predictions to the fitted

fold changes from the other replicate. Starting

with all parameters set to MOCK-estimated rates,

we sequentially used LPS-estimated parameters

formRNA, translation rate, and degradation rate

(in every possible order) and thus assessed the

contribution of each step as the increase in the

Spearman-corrected coefficients of determina-

tion (29).

We found that mRNA levels explain ~87 to

92%, per-mRNA translation rates ~4 to 7%, and

protein degradation rates ~3 to 6% of protein

fold changes after 12 hours (Fig. 3C and fig.

S11B) (29). mRNA fold changes contributed at

least eight times as much as did the protein life

cycle combined for both induced and repressed

proteins (fig. S12 and table S5) (29). However,

changes in per-mRNA translation rates contrib-

uted more substantially to protein-level induc-

tion, whereas changes in protein degradation

rates mostly contributed to protein-level repres-

sion (fig. S12 and table S5) (29).
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Fig. 3. Contributions of mRNA levels and the protein life cycle to

steady-state and dynamic protein levels. (A to D) Global contributions of

mRNA levels (orange), translation rates (tan), and protein degradation rates

(turquoise) to protein levels.Translation rates were derived either from pulsed

SILAC data [(A), (C), and (D)] or from TE values from ribosome profiling data

(B). Contributions to steady-state protein levels before LPS induction [(A) and

(B)] or to the change in protein abundance between LPS-induced and mock-

treated cells [(C) and (D)] are shown.The contributions to the fold change (C)

and to the absolute change in protein abundances (D) after LPS stimulation are

given.The contributions for steady state presented exclude the percent of the

variance in measured protein levels that is not explained by the variance in

mRNA, translation, or protein degradation (fig. S10). Per-gene parameter

values were in the order 1, mRNA; 2, translation; 3, degradation (29). All

possible orderings are provided in fig. S11. (E) Functional processes controlled

by distinct regulatory steps. For each process (rows) and regulatory step

(columns) shown are the magnitudes of the log10(P values) for the values or

differential fold changes (LPS/MOCK at 12 hours) of mRNA levels, protein

synthesis, or degradation rates of genes annotated to this process versus the

background of all genes fit by the model. Values are signed according to

directionality of the enrichment (Wilcoxon rank sum test). Shown are the five

gene sets most enriched for increased or decreased rates for the three “fold

change” columns, along with their scores in all six regulatory modes. Nearly

redundant gene sets were removed (all gene sets are available in table S6). (F)

Examples of regulation of expression dynamics. For each of three genes in each

of LPS (orange) and MOCK (black) condition shown are the measured values

(dots) and fits (curves) for (top to bottom)mRNA levels (in mRNAmolecules),

per-mRNA translation rates (protein molecules/mRNA molecule/hour), deg-

radation rates (1 per hour), H(t), M(t), and total protein [(M+H)(t)]; x axis, time;

y axis, intensity or rate. Light blue indicates key regulatory mode. mRNA and

protein molecules are only proxies for transcripts per million (TPM) and

intensity-based absolute quantification (IBAQ) microshares, respectively, in

order to help interpretation (29).
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Fold changes in induced immune response

proteins (29) were particularly dominated by

mRNA level changes (Figs. 2B and 3E and table

S6). For example, transient up-regulation of the

mRNA encoding the negative immune regulator

Trafd1 (Fig. 3F) (34) is the main cause of a strong

increase in its protein. In Trafd1 and hundreds of

other genes, a transient, strong, spiked change in

mRNA, combined with a time-constant protein

half-lifemuch longer than the 12-hour time course,

result in amonotonous increase in protein levels,

so that global protein fold changes at 12 hours

after LPS correlate best to mRNA changes at

5 hours (fig. S13). Only a handful of proteins [for

example, Tnfaip2 (26, 35, 36)] show peaked, tran-

sient protein expression within our time scale;

all have very high basal degradation rates, which

typically do not increase further. Last, a few key

regulators of DCs and the LPS response [such as

CCAAT/enhancer-binding protein b (Cebpb), a

pioneer transcription factor whose mRNA is al-

ready very highly expressed prestimulation, and

Rela] (Fig. 3F) are considerably dynamically reg-

ulated at the protein level, so that increased pro-

tein degradation rates (Rela) and/or increased

per-mRNA translation rates (Rela and Cebpb)

aremain drivers for protein change. These changes

cannot be observed solely from total protein and

transcript levels, but the corresponding rate changes

are readily apparent (Fig. 3F).

Although our global model incorporates the

data of only 3147 genes, several lines of evidence

suggest that this did not bias our global con-

clusions. First, although the 3147 modeled genes

are somewhat enriched for higher expressed genes

(fig. S14), we do model a substantial number of

lowly expressed mRNAs (fig. S14). Second, compu-

tationally correcting for this bias by recalculating

the contributions ofmRNA, per-mRNA translation,

and protein degradation rates while proportion-

ally up-weighting the impact of underrepresented

expression bins (29) does not affect our conclu-

sions (fig. S15). Third, the correlation between

our protein translation at baseline (t = 0 hours),

as estimated with pulsed-SILAC data or TE val-

ues, is comparable when considering only the

lowest expressed 25% (Pearson r ~ 0.52), the

highest expressed 25% (r ~ 0.58), or all modeled

proteins (r ~ 0.5) (fig. S16, A and B). Last, there is

no significant difference in the distribution of TE

values in the (underrepresented) lowly expressed

mRNA bins between those proteins we detect

(in the 3147 proteins) versus those we could not

include in our model (P = 0.069, t test) (fig.

S16C); thus, it is unlikely that the lowly expressed

genes that we could not model have different

regulatory modes.

Protein life-cycle changes primarily

affect proteins performing basic

cellular functions

Although mRNA fold changes contributed most

to relative changes in protein expression (ratios

of LPS to MOCK-simulated protein levels), pro-

tein synthesis and degradation rates do change

significantly for 357 proteins (~11% of consist-

ently detected proteins) (tables S7 and S8) (29)

and in particular for proteins performing essen-

tial cellular functions (“housekeeping proteins”)

(Figs. 2B and 3E and table S6), including cyto-

skeletal, metabolic, ribosomal (Fig. 4A), and mi-

tochondrial proteins (Fig. 4B). Because these are

among themost abundant in the cell (13, 16,37,38),

we reasoned that although mRNA changes may

dominate the relative (fold) changes in protein

levels after LPS stimulation, changes in the pro-

tein life cycle could contribute substantiallymore

to differences in absolute cellular protein abun-

dance than to relative changes. For example, con-

sider two genes: Gene 1 is induced 10-fold from

10,000 to 100,000 proteins (a substantial change

in relative protein abundance), whereas gene 2 is

induced 1.2-fold from 1,000,000 to 1,200,000 pro-

teins (a substantial change in absolute protein

abundance). We asked whether relative and ab-

solute changes are associated with different regu-

latorymechanisms. Indeed, we found that changes

in translation and degradation rates together ex-

plain more of absolute protein changes than do

changes in mRNA levels (mRNA, ~32 to 43% of

the fit value; per-mRNA translation rates, ~22 to

41%; protein degradation rates, ~19 to 36%) (Fig.

3D and fig. S11C). Thus, posttranscriptional reg-

ulation contributes substantiallymore to absolute

protein level changes than to relative protein

level changes.

An increase in degradation rates

of mitochondrial proteins is

associated with mitophagy

Upon LPS stimulation, a substantial decrease in

the level of mitochondrial proteins is associated

with increased degradation rates, although these

proteins are among the most stable in unstimu-

lated DCs (Figs. 2B, 3E, and 4B and table S6).

This increase in protein degradation is accom-

panied by a significant decrease (P < 10
−10

,

Wilcoxon rank sum test) (Fig. 3E and table S6) in

mRNA levels and in per-mRNA translation rates

(P < 10
−7
, Wilcoxon rank sum test) (Fig. 3E and

table S6), suggesting decreased production of

newmitochondrial proteins and increaseddestruc-

tion of old ones. Both structural mitochondrial

proteins and enzymes in key mitochondrial meta-

bolic pathways have increased degradation. The

increased degradation of key enzymes—such as

Sucla2, Aldh2, and Aco2—is consistent with a
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Fig. 4. Degradation of mitochondrial proteins after LPS stimulation is associated with mitophagy.

(A and B) Increased translation rates of some ribosomal proteins (A) and increased degradation rates of

mitochondrial proteins (B). Shown are the distributions of log2 fold changes of translation rates (DTi, A)

or degradation rates (DDi, B) between LPS- and MOCK-stimulated cells of all measured ribosomal pro-

teins [(A), red] or mitochondrial proteins [(B), red; from MitoCarta annotations (43)] and all measured

proteins (gray). (C) Evidence of mitophagy in LPS-stimulated DCs. Shown is the mitochondrial to

nuclear DNA ratio (y axis) in DCs at 0, 12, and 24 hours after LPS stimulation (x axis). Values are

normalized to the average mitochondrial to nuclear DNA ratio at 0 hours. Asterisk indicates a significant

change relative to 0 hours (P = 0.016, t test, n = 3 independent biological replicates). (D) Distribution of

raw log2 LPS/MOCK M/L ratios (a proxy for protein decay) for all measured mitochondrial proteins [in

MitoCarta (43)] at 12 hours (black) and 24 hours (gray) after stimulation.
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reported shift in LPS-stimulated DCs from oxi-

dative phosphorylation and oxygen consumption

to glycolysis, glucose consumption, and lactate

production (39–42).

The increased loss of structural proteins and

enzymes in the mitochondria may be due to ei-

ther a targeted metabolic shift in carbon and

energymetabolism through a reduction of a spe-

cific subset of the mitochondrial proteome or a

more global loss of entire mitochondria through

mitophagy. To experimentally distinguish between

the twohypotheses,wemeasured themitochondrial-

to-nuclear DNA ratio in unstimulatedDCs and at

12 hours and 24 hours after LPS stimulation (the

latter time point was chosen to account for any

delay in complete mitochondrial DNA degrada-

tion) (Fig. 4C). There was no significant change

in the ratio of mitochondrial-to-nuclear DNA at

12 hours after LPS stimulation, but there was a

significant (~25%; P = 0.016, t test) reduction at

24 hours after stimulation (Fig. 4C). Indeed, ana-

lyzing pulsed SILAC data collected at 24 hours

after LPS andmock stimulation,we saw a decrease

in the M/L ratios (a proxy for increased degrada-

tion) of ~80% of annotated mitochondrial pro-

teins in LPS versus MOCK samples (Fig. 4D) and

in nearly all mitochondrial proteins with a higher

mitochondrial localization prediction score [from

MitoCarta (43)—over 95% of the 156 proteins with

a score >20 of the 472 measured mitochondrial

proteins] (fig. S17). These results suggest that

mitophagy is a driver of LPS-induced mitochon-

drial protein degradation inDCs, which is consist-

ent with previous observations of mitophagy in

virus- or bacteria-infected DCs (44) and might

also contribute to epitope presentation, as pre-

viously proposed (45).

Discussion

We determined the contribution of changes in

mRNA levels, protein synthesis, and protein deg-

radation rates during a dynamic response and

found that changes in mRNA levels dominate

relative fold changes. When considering also

absolute changes inproteinmolecules (abundance),

our data suggest a model in which the cellular

proteome is dynamically regulated through two

strategies.

In the first strategy, mRNA regulation acts

primarily to ensure that specific functions—here,

immune response proteins—are only expressed

when needed and thus explains most of the fold-

change differences in protein levels, contributing

to LPS-induced protein fold changes at least 8

times as much as the combined protein life cycle

within the 12-hour time scale of ourmeasurements.

It is possible that protein life-cycle changes are

important to turn over key regulatory and signal-

ing proteins at later phases of the response. Al-

though our study does not directly address which

steps in mRNA regulation account for this, our

related work on the RNA life cycle during the

first 3 hours in LPS-stimulated DCs suggests

that transcriptional changesmay in turndominate

differential mRNA expression, whereas dynamic

changes in RNA processing or degradation affect

only a minority of genes, albeit with important

function (46). Furthermore, in contrast to previ-

ous reports in which degradation rates contrib-

uted onlymarginally (16, 20), but consistent with

Li et al. (6), we see that within the protein life

cycle, changes in protein degradation rates play

an equal role to changes in per-mRNA transla-

tion rates. Although some of this is due to turn-

over from increased secretion of some proteins

(figs. S9C and S18), excluding the secretome (33)

from our analysis did not strongly alter this glob-

al trend (fig. S18). Last, although mRNA changes

dominate changes in protein levels, it may be

difficult to discern this relationship in the ab-

sence of a model-driven analysis. Thus, whereas

mRNA induction is readily reflected in protein

level induction (fig. S19 and table S9), albeit some-

what dampened (fig. S19 and table S9), few of the

912 repressed mRNAs (more than twofold) show

matching protein changes (fig. S19 and table S9).

This could be naively interpreted as substantial

posttranscriptional control, but preexisting pro-

teins, the long protein half-life, and the delay of

protein changes relative to mRNA changes (fig.

S13) complicate such an intuitive interpretation,

and our analysis shows that mRNA changes

drive protein down-regulation as well (fig. S12

and table S5) (29).

In the second strategy, regulation at the pro-

tein level primarily readjusts the preexisting pro-

teome, especially “housekeeping” proteins, in

order to meet the requirements of a new cellular

state, such as change in shape or metabolism.

Thus, when we consider the contribution of a

change in each rate to the change in the number

of proteins (rather than the relative fold change),

the contribution of changes in the protein life

cycle is substantially increased (Fig. 3D). We find

similar patterns of contributions when we use

the Spearman rank correlation rather than Pearson

correlation (fig. S20) (29), suggesting that our

conclusions are robust to outliers with particu-

larly strong changes.

The extent to which this two-part strategy

applies in other dynamic settings remains to be

determined. Recent studies comparing protein

and translation rate differences between different

states (for example, differentiated versus nondif-

ferentiated cells or between different yeast strains)

suggested that translation rate differences affect

differential protein expression only modestly

(20, 47–51) but do affect some highly expressed

proteins, including ribosomal proteins (49, 50),

which are also translationally regulated in our

system.

Our analysis of unstimulated (resting) post-

mitotic DCs refines and extends previous models

of protein level regulation in steady state. In

our cells, nearly two thirds of the gene-to-gene

variation in total protein levels is explained by

regulation ofmRNA levels—a higher contribution

than previously reported in dividing mammalian

cells (16), possibly because of the regulatorymecha-

nisms active in primary postmitotic, homeostatic

resting cells. For example, the increased role we

observed for protein degradation, in contrast to

prior studies (16, 20), may be needed by postmi-

totic cells that cannot simply renew their protein

pool through division-coupled passive dilution.

Furthermore, our analysis corrected for RNA-Seq

expression reproducibility, intralibrary protein

expression reproducibility, and library-dependent

protein expression biases (fig. S21) (29), all of

which are essential to avoid inadvertent attribu-

tion of measurement errors to modeled transla-

tion and protein degradation rates. Indeed,

whereas from raw data mRNA explains 27% of

the gene-to-gene variation in protein levels at

baseline (t = 0), using modeled expression values

it explains 42%, and once correcting for data

reproducibility (29), it explains 52%. This com-

pares well with a recent study (6) that found that

mRNA levels explain at least 56% of the differ-

ences in protein abundance [when estimating

the variances of errorswith controlmeasurements

(16)] and possibly as much as ~84% [using TE

values to estimate the systematic error in trans-

lation rates in (16)]. Each of these strategies

highlights the importance of determining and

correcting for stochastic and systematic errors

in the data. Even with our conservative estimates,

the protein life cycle is estimated to contribute, at

minimum, about a third of the final steady-state

protein expression level. Because protein expres-

sion levels span around 4 to 5 orders of mag-

nitude (13, 16, 37, 38), differences between genes

in the protein life cycle can easily cause a 10- to

100-fold change in protein expression.

Our experimental and analytical design should

be broadly applicable to study similar events in

diverse dynamical cell systems. Our analytical

model distinguishes per-mRNA translation and

protein degradation rates that were confounded

in previous, model-free analyses of raw H/L and

M/L ratios fromdynamic pulsed-SILAC data (20)

because of, for example, the contribution of mRNA

and protein degradation to the H/L signal and

of recycled labeled amino acids to theM/L signal

(29). Our empirical Bayes strategy also handles

noise in proteomics data in a principled and con-

servative way. Nevertheless, we make some sim-

plifying assumptions in our model (such as linear

changes in per-mRNA translation rates and deg-

radation rates) that may be refined in the future

[for example, with sigmoidal functions (22, 52, 53)],

allowing us to estimate additional valuable param-

eters (such as time point of rate change). This

would require finer-resolution data, such as

from ribosome profiling (49, 54, 55), puromycin-

associated nascent chain proteomics (56), or the

combination of pulsed-SILAC labeling with pulse-

labeling by using the methionine analog azido-

homoalanine (33, 57). Such enhanced methods

will provide a framework to study the contribu-

tions of the protein life cycle in diverse dynamic

systems and help identify new key regulators of

these responses.
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How the immune system readies for battle

Although gene expression is tightly controlled at both the RNA and protein levels, the quantitative contribution of each

step, especially during dynamic responses, remains largely unknown. Indeed, there has been much debate whether

changes in RNA level contribute substantially to protein-level regulation. Jovanovic et al. built a genome-scale model

of the temporal dynamics of differential protein expression during the stimulation of immunological dendritic cells

(see the Perspective by Li and Biggin). Newly stimulated functions involved the up-regulation of specific RNAs and

concomitant increases in the levels of the proteins they encode, whereas housekeeping functions were regulated

posttranscriptionally at the protein level.
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