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Spatial localization is a key determinant of cellular fate and 

behavior, but methods for spatially resolved, transcriptome-wide 

gene expression profiling across complex tissues are lacking. 

RNA staining methods assay only a small number of transcripts, 

whereas single-cell RNA-seq, which measures global gene 

expression, separates cells from their native spatial context. 

Here we present Seurat, a computational strategy to infer 

cellular localization by integrating single-cell RNA-seq data with 

in situ RNA patterns. We applied Seurat to spatially map 851 

single cells from dissociated zebrafish (Danio rerio) embryos 

and generated a transcriptome-wide map of spatial patterning. 

We confirmed Seurat’s accuracy using several experimental 

approaches, then used the strategy to identify a set of 

archetypal expression patterns and spatial markers. Seurat 

correctly localizes rare subpopulations, accurately mapping 

both spatially restricted and scattered groups. Seurat will be 

applicable to mapping cellular localization within complex 

patterned tissues in diverse systems.

A major focus of developmental biology is understanding the origin 

and features of different cell types in complex tissues, including the 

gene expression modules that underlie specific cell types and states, the 

regulatory circuits that set up these expression programs, and the cell’s 

molecular signals and interactions. Genomics tools for dissecting such 

processes1–3 are not easily applied to three-dimensional tissues where 

heterogeneous cell populations are interleaved in close proximity.  

Spatial heterogeneity in developing organisms has typically been 

studied by RNA hybridization, immunohistochemistry, fluorescent 

reporters, or purification or induction of predefined subpopulations 

and subsequent genomic profiling (e.g., RNA-seq). Such approaches, 

however, currently rely on a small set of predefined markers, therefore 

introducing selection bias that limits discovery.

Emerging methods in single-cell genomics, especially single-cell 

RNA-seq4,5, provide new opportunities for developmental biology. 

Single-cell RNA-seq is quickly becoming an established experimen-

tal method, with ongoing cost and throughput improvements ena-

bling applications from cell type discovery6,7 to regulatory network 

inference8,9 to the reconstruction of developmental processes10–12. 

However, high-throughput applications of single-cell RNA-seq to 

solid tissues rely on dissociating tissues into single cells7,10, separating 

cells from their native spatial context, such that further analyses lack 

crucial information on cells’ environments and locations. Although 

new experimental approaches for sequencing cellular RNA in situ13,14 

have been proposed, these require highly specialized experimental 

tools and do not yet offer the widespread applicability or molecular 

sensitivity of more established single-cell RNA-seq protocols.

Here we present an alternative approach to study spatial patterning 

of gene expression at the single-cell level, applying it in the context of 

the widely studied zebrafish embryo. In embryos at the late blastula  

stage, when cell fate is being decided15 on the basis of inputs from 

several morphogens16 whose gradients originate from different 

regions of the embryo, the spatial location of cells is paramount16,17. 

This stage has been extensively studied by in situ patterns for known 

drivers of embryonic patterning and gastrulation16,18,19. However, 

marker analysis can localize only a handful of genes simultaneously. 

We use single-cell RNA-seq to identify thousands of RNAs expressed 

in each cell and infer its spatial origin computationally. We implement 

our method as part of the Seurat R package for single-cell analysis, 

named for the artist Georges Seurat to invoke the analogy between 

the intricate spatial patterning of single cells and a pointillist painting. 

Seurat uses a statistical framework to combine cells’ gene expression 

profiles, as measured by single-cell RNA-seq, with complementary  

in situ hybridization data for a smaller set of ‘landmark’ genes  

that guide spatial assignment. This addresses spatial localization  

more directly and generally than previous efforts, which used  

principal components to approximate spatial location20. Applying 

Seurat to a data set of 851 dissociated single cells from zebrafish 

embryos at a single developmental stage, we confirmed the  

method’s accuracy with several experimental assays, used it to 

predict and validate patterns where in situ data were not available,  

identified and correctly localized rare cell populations—either  

spatially restricted or intermixed throughout the embryo—and 

defined additional markers of these populations.

RESULTS

Combining RNA-seq and in situ hybridizations to infer  

spatial location

To identify the spatial position of dissociated cells, we devel-

oped a computational method (Fig. 1) implemented in Seurat 

(Supplementary Code) that takes as inputs: (i) the expression profiles  
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of individual dissociated cells and (ii) a spatial reference map of gene 

expression for a small number of landmark genes. This requires the 

subdivision of the tissue of interest into discrete spatial domains 

(hereafter, ‘bins’) of user-defined geometry and size. For the map, 

landmark genes are defined as either ‘on’ or ‘off ’ in each bin, for 

example, as determined from published in situ stainings. Seurat then 

uses the single-cell expression levels of the landmark genes to deter-

mine in which bins a cell likely originated.

Seurat consists of the following steps. (i) It uses co-expression pat-

terns across cells in the single-cell RNA-seq profiles to impute the 

expression of each landmark gene in each cell. This mitigates errors 

in detection of specific transcripts in individual cells due to technical 

limitations in single-cell RNA-seq21,22. (ii) It relates the continuous 

imputed RNA-seq expression levels of each landmark gene to the 

binary spatial expression values using a mixture model constrained  

by the proportion of cells expressing the gene in the reference map. 

(iii) For each bin, it constructs a multivariate normal model for  

the joint expression of the landmark genes based on these mixture 

models, the binary spatial reference map and an optional quantita-

tive refinement step that estimates covariance parameters between 

all pairs of genes. (iv) Given these models, it infers the spatial origin 

of each profiled cell by calculating a posterior probability for each 

cell-bin pair, allowing determination of the cell’s likely position(s) 

and confidence in the mapping. We describe each of these steps  

and associated computational challenges below, and then apply and 

validate Seurat by mapping cells in the zebrafish embryo.

Matching binary in situ hybridizations to continuous,  

noisy RNA-seq data

Seurat maps cells to their location by comparing the expression level 

of a gene measured by single-cell RNA-seq to its expression level in a 

three-dimensional tissue measured by in situ hybridization (Fig. 1).  

Although straightforward in principle, there are two primary  

challenges to address.

First, single-cell RNA-seq measurements are confounded by tech-

nical noise21,22, particularly false negatives and measurement errors 

for low-copy transcripts. As only a few landmark genes characterize 

each region of the spatial map, erroneous measurements for these 

genes in a given cell could interfere with its proper localization. To 

address this, Seurat leverages the fact that RNA-seq measures multiple 

genes that are co-regulated with the landmark genes and uses these 

genes to impute the values of the landmark genes. Specifically, Seurat 

uses the expression levels of all highly variable genes in the RNA-seq 

data set and an L1-constrained, LASSO (least absolute shrinkage and 

selection operator23) technique to construct separate models of gene 

expression for each of the landmark genes. In this way, expression 

measurements across many correlated genes ameliorate stochastic 

noise in individual measurements.

Second, for each landmark gene, Seurat must relate its continuous 

imputed RNA-seq expression levels to its binary state in the landmark 

map. As the in situ color deposition reaction is halted at an arbitrary 

point in standard protocols, and individual probes do not generate 

equivalent signals, each gene requires a separate conversion between 

gene expression level detected by RNA-seq and binary in situ interpre-

tation. To this end, Seurat relates the typical bimodal distribution of 

its imputed expression measurements to the ‘on’ and ‘off ’ modes of the  

spatial reference map. It models the imputed measurements as a mixture  

of two Gaussian distributions, initialized based on the percentage of 

cells where expression was detected in our binary in situ patterns. 

Seurat then fits the parameters describing the two modes using ‘expec-

tation maximization’, followed by an additional heuristic step to better 

reflect the overall data (Online Methods; Supplementary Note).

Probabilistic inference of spatial origin

Seurat next constructs a model for the joint expression of the land-

mark genes in each bin based on the parameters of the mixture models  

and the binary spatial reference map. Intuitively, for each cell  

and landmark gene, Seurat calculates the likelihood that this cell’s 
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Figure 1 Overview. As input, Seurat takes single-

cell RNA-seq data (1) from dissociated cells (e.g., 

cells A–C), where information about the original 

spatial context was lost during dissociation, 

and (2) in situ hybridization patterns for a 

series of landmark genes. To generate a binary 

spatial reference map, the tissue of interest is 

divided into a discrete set of user-defined bins, 

and the in situ data are binarized to reflect the 

detection of gene expression within each bin, 

as is shown for genes X, Y and Z. (3) Seurat 

uses expression measurements across many 

correlated genes to ameliorate stochastic noise 

in individual measurements for landmark genes. 

As schematized, Seurat learns a model of gene 

expression for each of the landmark genes based 

on other variable genes in the data set, reducing 

the reliance on a single measurement, and 

mitigating the effect of technical errors. Seurat 

then builds statistical models of gene expression 

in each bin (4) by relating the bimodal expression 

patterns of the RNA-seq estimates to the binarized 

in situ data. Shown are probability distributions 

for genes X, Y and Z for three different embryonic 

bins. Finally, Seurat uses these models to infer 

the cell’s original spatial location (5), assigning 

posterior probability of origin (depicted in shades 

of purple) to each bin. Seurat can map exclusively 

to one bin (e.g., cell C), or assign probability to 

multiple bins in some cases (e.g., cells A and B).
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expression of the landmark gene reflects the ‘on’ state, and thus, a 

probability that this cell originated from bins marked as ‘on’ in the 

reference map. Seurat also implements a recommended refinement 

step that extends the quantitative nature of these models and also con-

siders the covariance structure between all pairs of landmark genes. 

Finally, Seurat infers from these models a posterior probability that a 

cell originated from each of the bins in the map. When there is insuf-

ficient information to assign a cell exclusively to one bin, Seurat’s 

probabilistic approach enables a cell to split its posterior probability 

across multiple bins.

Zebrafish blastula spatial reference map from RNA in situ 

hybridizations

We tested Seurat and demonstrated its utility using late blastula stage 

(50% epiboly) zebrafish embryos (Fig. 2a). We generated a reference 

spatial map by discretizing expression patterns for 47 genes obtained 

from published bright-field images of in situ hybridizations generated 

by standard colorimetric deposition, primarily from ZFIN’s collec-

tion24 or high-throughput data sets25,26 (Supplementary Table 1). We 

divided the embryo into 128 bins (each ~40–120 cells), equally sized 

along the dorsal-ventral axis, based on the most restricted expression 

domain in our in situ set, and unevenly sized along the animal-vegetal 

axis, broadening as they approached the animal pole where patterns 

were less complex and less sharply defined (Fig. 2b). Because the 

embryo still exhibits left-right symmetry at this stage, we collapsed the 

equivalent left and right bins in our analysis, treating the embryo as 

64 bins. We ignored the depth axis (from surface to interior), because 

there are no major examples of gene expression differences along this 

axis at this stage of development, with the exception of the special-

ized enveloping layer and yolk syncytial layers17. We manually scored  

the in situ hybridizations in each bin once, before any data analysis 

(Fig. 2b). Binary discretization, although oversimplified, avoids over-

interpretation, especially given that published images differ markedly 

in their resolution, lighting and extent of staining (Supplementary 

Fig. 1). As we show below, Seurat robustly mapped cells with high 

quality even based on an initial binary scoring.

Single-cell RNA-seq of zebrafish embryos

To apply Seurat, we generated single-cell RNA-seq profiles of dissoci-

ated cells from developing zebrafish embryos. We used a modified, 

strand-specific, single-cell RNA-seq protocol based on the SMART 

template switching method4,5,8 (Fig. 2c), where the template-switch 

oligonucleotide included a stretch of five randomized nucleotides, 

thereby tagging each mRNA molecule with a random molecular tag 

(RMT) before PCR to mitigate amplification bias. Furthermore, we 

used a modified library preparation protocol that shares similarities 

with Soumillon et al.27 and is based on the Nextera Sample Preparation 

Kit. It selectively amplifies the 5′ transcript end, retains strand informa-

tion and is compatible with standard Illumina sequencing primers. We 

pooled and sequenced libraries to an average depth of 530,000 reads 

per sample, where single-cell gene expression tends to saturate7,28,29. 

Following read alignment, we determined expression levels by count-

ing the number of distinct RMTs associated with each gene and nor-

malizing by the total number of RMTs in each cell. We prepared 1,152 

libraries, but retained 945 single cells after excluding those where  

less than 2,000 expressed genes were detected. Finally, we observed 

a population of 94 cells expressing high levels of canonical markers 

of the enveloping layer (e.g., krt18, krt4, cldne), a single layer of dif-

ferentiated squamous cells that cover the outside of the embryo30,31. 

These cells, identified by a principal component analysis (PCA), do 

not exhibit the same expression patterns of the landmark genes in our 

spatial reference map, and so were excluded from further consideration 

(Supplementary Fig. 2).

Overall, we analyzed 851 single-cell transcriptomes, obtained from 

cells that were isolated under three different experimental protocols. 

The vast majority (n = 682) were collected in an unbiased manner 

from 28 dissociated zebrafish embryos (Fig. 2c and Supplementary 

Movie 1). To reduce confounding transcriptional changes that occur 

as a result of dissociation, we collected and froze cells within 15 min of 

dissociation. In addition, for subsequent testing of Seurat’s success, we 

included two internal controls: (i) 141 cells that were collected using 

a slightly modified dissection and dissociation protocol that enriches 

for cells nearer the embryonic margin (Supplementary Movie 2); and 

(ii) 28 ‘reference’ cells collected from intact embryos under a dissec-

tion microscope, such that their location is approximately known 

(Fig. 3c and Supplementary Movie 3). We used all 851 cells as input 

to Seurat, withholding from the method any information on how each 

individual cell was collected.

Accurately inferred spatial assignments and in situ hybridizations

We determined that Seurat inferred cell location accurately by four com-

plementary approaches. First, Seurat assigned the 682 randomly dissoci-

ated cells throughout the embryo (Fig. 3a and Supplementary Fig. 3), 

with roughly equal representation from the dorsal, ventral, marginal and 

animal regions, consistent with the randomized nature of embryonic dis-

sociation. Second, as a low-resolution benchmark, we examined Seurat’s 

localization of the cells that were produced using the modified dissocia-

tion protocol that strongly biases against the animal cap and enriches 

for the embryonic margin (Supplementary Movie 2). Indeed, Seurat’s 

inferred locations overlapped considerably with the experimentally 
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Figure 2 Single-cell RNA-seq from zebrafish 

embryos. (a) Zebrafish embryo at 50% epiboly, 

depicting cell layers (enveloping layer, EVL; 

deep cell layer, DEL; yolk syncytial layer, YSL), 

important structures (the margin), and the two 

major spatial axes (animal-vegetal and dorsal-

ventral). (b) To create the spatial reference map, 

we used 47 colorogenic in situ hybridization 

patterns (i.e., landmark genes), which were 

previously published in the scientific literature.  

We subdivided the embryo into 64 bins and visually 

scored each landmark as ‘on’ or ‘off’ within 

each bin using in situ hybridizations oriented 

in both lateral and animal views. Shown here is 

an in situ for ta/no tail and its resultant binary 

representation. (c) Single-cell RNA-seq protocol 

modified to include Random Molecular Tags.
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enriched area, exhibiting an approximately sevenfold depletion at the 

animal cap, and an accompanying enrichment at the margin, compared 

to the randomly dissociated cells (Fig. 3b). Third, we tested the inferred 

position of the 28 ‘reference’ cells that were manually isolated from intact 

embryos under a dissecting microscope, and hence we could visually 

approximate their original spatial location to an estimated precision 

of ± 1 bin margin in each axis (Fig. 3c and Supplementary Movie 3). 

Although throughput for this technique is too low for generating large 

numbers of cells, it enabled us to compare Seurat’s inferred locations 

with an independent benchmark. Seurat’s inferred location for these 

reference cells was, on average, within one bin of the registered location 

across both the dorsal-ventral and animal-vegetal axes, mirroring our 

own confidence in the collection of the cells (Fig. 3c–e).

Fourth, we generated an in silico catalog of inferred in situ patterns, 

by calculating for each gene its expected expression level in each of 

the 64 bins, as the weighted average of RNA-seq measurements for 

this gene based on Seurat’s probabilistic assignment of cells to bins 

(Fig. 3f). In cross-validation, for each landmark gene, we removed 

that gene from the spatial map, re-inferred the cells’ locations,  

and then created a simulated in situ pattern for the held-out gene. 

Our inferred patterns demonstrated remarkably high overlap with 

experimental data, defined as correctly classifying individual bins 

into the same ‘on’ or ‘off ’ expression state as our binary interpreta-

tions of published in situ hybridizations (median receiver operating  

characteristic (ROC) = 0.96), with 12 of 47 genes exhibiting near-

perfect classification (ROC > 0.98) (Fig. 3f–h). A rare subset of genes 
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Figure 3 Seurat correctly infers the spatial position of cells. (a) Seurat maps cells throughout the embryo, consistent with the random dissociation 

of the tissue. Shown are cell centroids for randomly dissociated cells. (b) A smaller number of cells were prepared with a modified protocol that 

depletes for the animal cap (bin rows 6–8) (Supplementary Movie 2), and Seurat captures this depletion in its mapping of these cells. Shown are the 

fold-changes in localization percentages (y axis) between the randomly dissociated and animal-depleted cells along the margin to animal axis (x axis, 
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apparently performed poorly (e.g., chd, Fig. 3f), but further inspection 

of the literature revealed that these had a wide variety of published  

in situ patterns at this stage, some of which largely agreed with Seurat’s 

predictions (Supplementary Fig. 1).

Clustering expression patterns reveal spatial archetypes

Extending this strategy, we next inferred in situ patterns for a larger 

set of 290 genes that were highly variable across single cells, clus-

tered them and identified nine archetypal expression patterns (Fig. 4a  

and Supplementary Fig. 4). These archetypes are consistent with 

known patterning gradients at this embryonic stage16 and span  

the 47 genes in our reference spatial map. We selected for in situ 

validation 14 genes from the different archetypes whose expres-

sion patterns had not been previously characterized at 50% epiboly  

(Fig. 4b and Supplementary Fig. 5). Our experimentally determined 

in situ expression patterns exhibited overall high accordance with 

Seurat’s predicted patterns (Fig. 4b). For example, genes predicted to 

be restricted to the very dorsal margin (tbr1b, slc25a33 and pkdcca) or 

to have dorsal enrichment (arl4ab) are indeed expressed with those 

patterns (Fig. 4b and Supplementary Fig. 5). All genes predicted  

to have marginal restriction (prickle1b and dusp4), marginal enrich-

ment (irx7, ets2 and tcf3b) or ventral skew (nrarpa, id2a, insm1b and 

prdm12b) exhibited those predicted features in situ (Fig. 4b). Even 

unusual and complex predicted patterns were correctly predicted 

(Fig. 4b), such as irx7’s lower expression in the animal cap and high 

expression close to the margin, especially on the lateral sides. In 2 of 

the 14 cases (ets2 and cpn1; Fig. 4b and Supplementary Fig. 5) the 

patterns were fundamentally correct, but were predicted to extend 

slightly farther than we observed in situ. Thus, Seurat can correctly 

transform single-cell RNA-seq data into spatial predictions for genes 

whose expression patterns are not known.

Spatially diverse landmark genes improve Seurat’s mapping

To assess Seurat’s sensitivity to the number and type of landmark 

genes in the spatial reference map, we downsampled the number of 

landmark genes used as input and performed a spatial power analysis  

(Supplementary Text and Supplementary Fig. 6). Seurat’s spatial 

mappings began to stabilize after the inclusion of ~30 landmark genes 

and were best when genes were sampled across all nine spatial arche-

types, whereas maps drawn from a more spatially restricted set did  

not perform as well. Further analysis suggested that having two  

genes with overlapping spatial expression patterns is valuable, but 

additional redundancy has diminishing returns.

Seurat correctly localizes rare cell populations

Seurat’s spatial inferences can be combined with unsupervised analysis 

of single-cell RNA-seq data to define and characterize both known and 

previously unidentified, rare subpopulations of cells within complex  

tissues. In this approach, putative subpopulations are first identi-

fied in an unsupervised manner and their identities are confirmed 

by examining the expression of known marker genes. Seurat is then 

used to determine the characteristic spatial patterning for each of 

these subpopulations.

To test this approach, we used Seurat to identify and localize  

three well-studied and rare subpopulations present near the embry-

onic margin: (i) prechordal plate progenitors (Fig. 5a, green),  

(ii) endodermal progenitors (Fig. 5a, blue), and (iii) primordial 

germ cells (PGC). We clearly identified the first two subpopulations 

in unsupervised analyses, with strong agreement between PCA and 

k-means clustering (Supplementary Fig. 7a–b). A distinct population 

of ten cells was distinguished by the second principal component and 

characterized by strong expression of the prechordal plate markers gsc 

and frzb (Fig. 5b and Supplementary Fig. 7c). The prechordal plate 

is located in the dorsal-most embryonic margin, and Seurat mapped 

all prechordal plate progenitors to this region (Fig. 5c, green). The 

PCA also uncovered another population of 19 putative endodermal  

progenitors, defined by high expression levels of sox32, cxcr4a  

and gata5 (Fig. 5b and Supplementary Fig. 7c). Seurat scattered  

the endodermal progenitors across the lowest tier of the embryonic 

margin (Fig. 5c, blue), consistent with their known localization and 

recapitulating their ‘salt-and-pepper’ pattern32. Finally, PGC cells only 

comprise ~1 per 500 cells at this stage, and thus we could not uncover 

them through unsupervised analysis of our 851 cells. However, we 

identified one cell that expressed extremely high levels of the canonical 

PGC markers ddx4/vasa, nanos3, and dnd1 (ref. 33; Supplementary 

Fig. 7d). Seurat mapped this cell to a mid-margin location, consistent 

with the distribution of these cells at this stage (Supplementary Fig. 7e).  

Thus, Seurat successfully characterized the spatial distribution of 

known subpopulations with different characteristic localizations.

Seurat discovers markers of rare subpopulations

We next extended Seurat to discover markers of rare subpopulations, 

focusing on prechordal plate progenitors. A spatially naive approach 

comparing our ten prechordal plate progenitors to all other cells 

in the embryo was only partially successful. Although it identified 

known markers of the prechordal plate (e.g., gsc, nog1 (refs. 34,35)),  

it also identified many broader markers of the embryonic margin 

DEM DRM VAVMRM EM AV DA

dusp4nrarpa ets2 id2aprickle1birx7 tbr1b slc25a33 tcf3b

a

b

Figure 4 Nine archetypal patterns discovered 

through spatial clustering. (a) We calculated 

imputed expression patterns based on Seurat’s 

spatial mapping for 290 highly variable genes. 

Genes were then clustered by their imputed  

spatial localization (Supplementary Fig. 5)  

into nine ‘archetypes’ that broadly describe  

the patterns of multiple genes: RM, restricted  

to margin; VM, ventral margin; DEM, dorsally  

enriched margin; DRM, dorsally restricted  

margin; EM, extended margin; V, ventral; DA, 

dorsal animal; VA, ventral animal; A, animal.  

(b) RNA in situ hybridization of genes selected 

from various archetypes without published  

expression patterns at 50% epiboly (as of  

4 September 2014). Top to bottom: Seurat’s 

predicted expression pattern, a lateral view  

of the in situ (dorsal to the right), and an animal cap view of the in situ (dorsal to the right). Experimentally determined patterns exhibit high accord with 

Seurat’s predictions, as described in the main text. Genes are connected to the archetype with which they clustered by black lines. Scale bar, 200 µm.
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(e.g., osr1, mixl1). The spatially naive approach failed because the 

cells of interest belong to two restricted populations when consider-

ing the entire embryo—cells that are located along the embryonic 

margin and cells that are prechordal plate progenitors (which are a 

subset of those along the embryonic margin). To overcome this, we 

used Seurat’s spatial inferences in a spatially aware marker selection 

strategy; we identified all marginally restricted cells, and then specifi-

cally searched for genes that were differentially expressed between 

the prechordal plate progenitors and the rest of the marginal cells.  

The spatially aware approach successfully rediscovered multiple well-

characterized prechordal plate progenitor markers (e.g., gsc, nog1, 

klf17 and six3b34–37), avoided the broader, nonspecific markers  

above and also found candidate markers that were not previously 

annotated in the prechordal plate24, including ripply1 and ptf1a, 

whose expression patterns were not known at 50% epiboly. Although 

we were unable to detect ptf1a, which is expressed at a very low level, 

an in situ hybridization for ripply1 agreed with Seurat’s prediction, 

and a ripply1/gsc double in situ hybridization showed that ripply1 is 

expressed only in a subset of gsc-expressing cells (Fig. 5d,e). Thus, 

we conclude that ripply1 is a bona fide marker of the prechordal plate 

progenitors at 50% epiboly, and the spatially aware approach discovers 

markers of rare subpopulations.

Seurat identifies dispersed, rare cell populations

Finally, we searched for potentially novel subpopulations present 

in our data set. Our PCA revealed a group of 12 cells (Fig. 5f–h, 

magenta, Supplementary Fig. 7f) which highly expressed genes that 

are hallmarks of apoptosis (foxo3b, tp53inp1, casp8 and ctsh), cellular 

stress (isg15, sesn3, mat2al and gadd45aa) and cell signaling (igf2a and 

aplnrb). Gene ontology analysis revealed a significant enrichment for 

targets of the p53 signaling pathway (FDR < 10−6). Seurat inferred that 

these ‘apoptotic-like’ cells were scattered throughout the developing 

embryo, although they originated more frequently toward the animal 

and ventral poles (Fig. 5g, magenta). Notably, these cells were not an 

artifact of the isolation process: they were identified in ten separate 

embryos, in each experimental batch, and previous in situ analysis for 

foxo3b, aplnrb and isg15 interdependently confirmed their individual 

scattered expression38,39.

We performed in situ analysis of casp8, gadd45aa, igf2a and tp53inp, 

and confirmed that these genes also exhibited similar scattered pat-

terns in intact embryos (Fig. 5i). Namely, these genes are expressed 

in cells sprinkled throughout the embryo, observable at all depths 

(the EVL and throughout the DEL), generally more frequently toward 

the animal pole. The number of cells and their specific locations were 

different for each embryo, consistent with stochastic localization.  

We verified by double fluorescent in situ hybridization that at least 

two of these markers (aplnrb and isg15) are indeed co-expressed  

in the same cells (Fig. 5j). We conclude that these cells constitute a 

previously uncharacterized and stochastically localized population of 

cells whose gene expression profile suggests cell stress.

DISCUSSION

To use single-cell RNA-seq within the context of complex, patterned 

and heterogeneous tissues, we developed Seurat, a computational 

method that uses a spatial reference map constructed from a small 

number of landmark in situ patterns to infer the spatial location of cells 

from their single-cell RNA-seq profiles. Seurat tackles several techni-

cal challenges, including the representation of in situ hybridizations  
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Figure 5 Seurat spatially characterizes rare  

cell populations. (a) Cartoon schematic of  

the prechordal plate progenitors (green) are  

co-localized at the dorsal margin, and 

endodermal progenitors (blue) are scattered 

along the embryonic margin. (b) Violin  

plots of the distribution of expression of  

classical endoderm markers (sox32, cxcr4a),  

classical prechordal plate marker (gsc)  

and proposed prechordal plate marker  

(ripply1), in the cell populations determined 

by PCA analysis: all marginal cells (margin), 

endodermal progenitors (endo) and prechordal 

plate progenitors (PCP). (c) Seurat localizes the 

endodermal progenitors (blue) and prechordal 

plate progenitors (green) to their characteristic 

locations. (d) Seurat’s predicted expression 

pattern (left) and in situ validation (right) of 

the expression of ripply1. (e) Double in situ for 

gsc (orange) and ripply1 (blue) confirming that 

ripply1 is expressed in the prechordal plate 

progenitors. (f) Previously uncharacterized 

group of cells (magenta) distinguished by PC4 

(by PCA), and expressing high levels of genes 

which are hallmarks of apoptosis. (g) Seurat’s 

projected localization of these ‘apoptotic-like’  

cells (magenta) are scattered around the 

embryo, but enriched toward the animal  

pole. (h) Violin plots of the distribution of 

expression of isg15 and mat2al, markers of 

the ‘apoptotic-like’ population in all the cells 

and the putative apoptotic-like cells. (i) In situ 

hybridization of four markers of the ‘apoptotic-like’ cells are expressed in similarly scattered patterns. Top: lateral view, bottom: animal pole view.  

(j) Double fluorescent in situ hybridization for aplnrb (magenta) and isg15 (green) reveals that these markers are co-expressed, as predicted by Seurat. 

Notably, cells appear to express high levels of either aplnrb or isg15 and lower levels of the other gene. Scale bars, 100 µm.
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across spatially resolved tissue slices, blending together the signal 

of many cells, but enabling unbiased discovery of spatial landmarks. 

As these are not single-cell experiments, they cannot resolve spa-

tially intermixed populations, such as the endodermal progenitors or 

 apoptotic-like cells we described here. However, the spatial reference 

maps generated by these techniques are highly complementary with 

Seurat’s method, and combining these approaches represents a gen-

eralizable strategy for spatially reconstructing complex tissues at the 

single-cell level without prior knowledge of gene expression.

Finally, elements of Seurat’s approach suggest a broader framework 

to integrate single-cell RNA-seq data with other complementary data 

sets based on a limited number of marker genes. Data imputation is a 

useful tool to be applied to these problems—specifically, leveraging 

correlated genes across the transcriptome improves the robustness of 

marker genes with complementary sources of information. Whereas 

Seurat focuses on inferring spatial origin, combining transcrip-

tomics data with RNA-FISH, CyTOF mass spectrometer39 or flow 

 cytometry41 data could help determine a cell’s developmental state or 

disease phenotype and relate it to a rich body of published research. 

Seurat shares with these potential approaches the challenges and goal 

of learning the ‘metadata’ of each single cell, inferring its origins and 

history to better understand its behavior and future fate.

METHODS

Methods and any associated references are available in the online 

version of the paper.

Accession codes. GEO: GSE66688. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Animal models. This study includes the use of live vertebrate embryos. 

Animals were handled according to National Institutes of Health (NIH) guide-

lines. All vertebrate animal work was performed at the facilities of Harvard 

University, Faculty of Arts & Sciences (HU/FAS) under protocol 25-08. The 

HU/FAS animal care and use program maintains full AAALAC accreditation, 

is assured with OLAW (A3593-01) and is currently registered with the US 

Department of Agriculture (USDA).

Collecting dissociated cells. Cells from 28 embryos are in the final data set. 

Fertilized eggs from wild-type (Tupfel long fin/AB) in-crosses were incubated 

in 1 mg/ml pronase (protease from Streptomyces griseus, Sigma-Aldrich) in a 

glass dish for 4–5 min until the chorion began to blister. The embryos were sub-

merged in ~200 ml of embryo medium in a glass beaker without allowing them 

to contact air or plastic (both of which will cause the embryos to burst). The 

medium was poured off and new medium was vigorously added (again without 

allowing embryos to contact air) twice, in order to mechanically remove the 

chorions. The embryos were cultured in Petri dishes coated with 2% agarose 

(to avoid contact with plastic) either at 23 °C or 28 °C until they reached 50% 

epiboly (about 6 h post-fertilization at 28 °C). At 50% epiboly, single embryos 

were visually confirmed to be at the correct stage and were transferred to Petri 

dishes that had been coated with 2% agarose, filled with DMEM/F12 media 

(Gibco/Life Technologies), and allowed to soak for 3 h. Two pairs of watch-

maker forceps were used to dissect the blastula cap of the embryo away from 

the yolk. First, one pair of forceps was used to hold and rotate the cap, while the 

other was used to cut and pinch away the yolk that extended below the blastula 

cap. Then, the blastula cap was cut slightly up the side, which exposed the yolk 

that was inside of the blastula cap, which could then be gently peeled away. The 

blastula cap was transferred by pipette into a microfuge tube that contained 

60 µl of DMEM/F12 media. The cells were dissociated by vigorously flicking 

the tube ten times, and then pipetting the entire volume twice while visually 

confirming that dissociation had occurred. A timer was started at this time to 

track the amount of time the embryo had been dissociating. If cell clumps were 

still visible, the tube was flicked again. 180 µl of DMEM/F12 was added to dilute 

the cell mixture, then 120 µl of the diluted cell mixture was pipetted across the 

surface of a new agarose-coated dish filled with DMEM/F12 media. To collect 

cells, a P2 pipettor was used, while observing the cells under the dissecting 

scope, to collect 0.5 µl of media that contained a single cell. This was pipetted 

into 3 µl of TCL lysis buffer (Qiagen) in the lid of a PCR strip and mixed three 

times to ensure that lysis occurred. After eight cells were collected, the entire 

strip of lids was snapped into a 96-well plate and kept on dry ice.

For collections of margin-enriched populations, the same procedure was 

followed, except a scalpel was used to cut the embryo about halfway along the 

animal-vegetal axis and remove the animal cap before dissecting away the yolk 

and proceeding (Supplementary Movie 2).

Collecting single reference cells. Fertilized eggs were collected from TL/AB 

in-crosses and dechorionated in 1 mg/ml pronase for 4–5 min. Cells from 21 

embryos are in the final data set. A portion of the embryos was then injected 

at the one-cell stage with 1 picoliter of 0.3 mg/ml 3 kD dextran-Alexa 488 

(Molecular Probes D34682). Both the dextran-injected and uninjected 

embryos were cultured at 28 °C in an agarose-coated Petri dish filled until they 

reached sphere stage. The plate was checked during culturing and damaged or 

abnormal embryos were removed. At sphere stage, embryos were transferred 

to an agarose-coated Petri dish with small wells (a transplantation dish) filled 

with 0.3× Danieau medium (final concentration: 17.4 mM NaCl, 0.21 mM KCl,  

0.12 mM MgSO4, 0.18 mM Ca(NO3)2, 1.5 mM HEPES pH 7.6), and 10–20 cells  

were transplanted from the Alexa488-dextran–injected embryos to the  

uninjected15, placed in a cluster on one side of the embryo, generally about 

halfway between the margin and the animal pole. Damaged embryos were 

removed from the plate, and the transplanted embryos were divided into two 

populations; half were cultured at 28 °C, and the other half were cultured at 

room temperature so that the populations would develop asynchronously and 

provide a longer window when embryos would be at the proper stage for cell 

collection. When embryos reached 50% epiboly, a transplantation needle was 

used to remove a small cluster of cells from the embryo under a dissecting 

scope by mouth pipetting. The location from which the cluster was taken 

was immediately noted. It is important to note that at 50% epiboly stage, the 

dorsal-ventral axis is not yet morphologically apparent, so we used the fluo-

rescent cells as a fiducial mark to later determine where cells came from on the 

dorsal-ventral axis. More specifically, the location of the cluster was judged in 

two ways (Fig. 3c): (i) tier was determined by visually counting the number 

of cells up from the embryonic margin (cells are readily visible under the dis-

secting scope if it has been set up with adequate contrast) and (ii) position in 

the DV axis was recorded as an angular measurement from the fluorescent 

cells that had been previously transplanted. The small cluster of cells that was 

sucked out of the embryo was injected into a clean, neighboring well. The 

cells were gently rinsed by ejecting a stream of buffer over them, and then a 

single cell was separated from the others preferably with a gentle stream of 

buffer, but occasionally by pipetting up and down. A single, isolated cell was 

transferred to 0.5 µl of 0.3× Danieau medium that had previously been placed 

in a PCR tube cap. The successful transfer of the cell was verified visually 

under the dissecting scope, and the cell was lysed by the addition of 3 µl of 

TCL lysis buffer (Qiagen). To preserve the embryos, generally a maximum of 

five cells were taken from any individual embryo. The embryos were returned 

to the incubator to develop to shield stage. At shield stage, gastrulation begins, 

which results in a thickening of the embryonic margin at the dorsal pole (the 

shield), allowing visual determination of the dorsal-ventral axis. Thus, at this 

stage, embryos were photographed from an animal cap view under a dissecting 

scope, where both the shield and fluorescent transplanted cells were clearly 

visible. To determine the location on the dorsal-ventral axis that the cells were 

picked from, an angle was drawn through the fluorescent cells, the center of the 

embryo, and the center of the shield providing an angular measure of where 

the cell originated along the dorsal-ventral axis.

Probe synthesis. Fragments of the genes arl4ab, casp8, cpn1, dusp4, gadd45aa, 

id2a, igf2a, insm1b, irx7, isg15, pkdcca, prickle1b, ripply1, tbr1b, tcf3b and 

tp53inp1 were amplified using Hi-Fidelity Platinum Taq (Life Technologies; 

quarter-size reactions, but otherwise according to manufacturer’s instruc-

tions) and the primers listed in Supplementary Table 2. These fragments 

were cloned into pSC-A plasmid using Strataclone PCR Cloning Kit (Agilent; 

half-size reactions, but otherwise according to manufacturer’s instructions), 

used to transform the included cells, and plated on blue-white selection 

media. Colonies were selected, cultured, mini-prepped and sent for sequenc-

ing. Constructs cloned above as well as constructs for aplnrb43 and ets2  

(ref. 44) were linearized with the appropriate restriction enzyme 

(Supplementary Table 2) and purified using PCR cleanup columns (Omega 

Cycle Pure Kit). The probe was synthesized according to manufactur-

er’s instructions, using the appropriate polymerase (T3 or T7, Roche) and  

10× RNA labeling mix (DIG or Fluorescein, Roche) (Supplementary Table 2). 

The transcription reactions were incubated for 3 h, purified using RNA cleanup 

columns (Omega E.Z.N.A. Total RNA Kit I), quantified using a Nanodrop, 

assessed on an agarose gel for successful transcription of a product of the 

expected size and normalized to 20 ng/µl in HM+ buffer (50% formamide, 

5× saline-sodium citrate buffer (SSC), 0.1% Tween-20, citric acid to pH 6.0, 

50 µg/ml heparin, 500 µg/ml tRNA), then stored at −20 °C.

Colorogenic in situ hybridization. In situ hybridizations were done essentially 

as described45. Embryos were collected from TL/AB in-crosses, dechorionated, 

cultured to 50% epiboly in agarose-covered dishes at 28 °C. They were fixed in 

4% formaldehyde (Sigma-Aldrich) at 4 °C overnight. They were rinsed twice 

for 10 min with PBST (1× PBS + 0.1% Tween-20 (OmniPur)), passed through a 

methanol dehydration series (10 min each, 67% PBST:33% methanol (Macron), 

33% PBST: 67% methanol), then rinsed in methanol twice for 10 min,  

and permeabilized at −20° at least overnight. Embryos were rehydrated  

(10 min each, 75% methanol:25% PBST, 50% methanol:50% PBST, 25% metha-

nol:75% PBST, four times for 10 min PBST). Embryos were then prehybridized 

in HM+ buffer (50% formamide, 5× SSC buffer, 0.1% Tween-20, citric acid to 

pH 6.0, 50 µg/ml heparin, 500 µg/ml tRNA) at 70 °C for at least 2 h. Probes 

were normalized to 1 ng/µl per probe (digoxigenin-incorporated for single  

in situ hybridizations or digoxigenin - and fluorescein-incorporated for double 

in situ hybridizations) in HM+ buffer and denatured at 70 °C for 10 min. The 

prehybridization HM+ buffer was replaced by the probe and embryos were 

incubated with the probe overnight.
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The next morning, the probe was removed and returned to −20 °C for 

future re-use. Excess probe was removed with first a series of washes that had 

been prewarmed to 70 °C: 1× 10 min HM buffer (HM+ without heparin and 

tRNA), 1× 10 min 75% HM:25% 2× SSC, 1× 10 min 50% HM:50% 2× SSC,  

1× 10 min 25% HM, 75% 2× SSC, 1× 10 min 0.2× SSC, 1× 30 min 0.2× SSC; 

then a series of room temperature washes: 1× 5 min 75% 0.2× SSC:25% PBST, 

1× 5 min 50% 0.2× SSC:50% PBST, 1× 5 min 25% 0.2× SSC:75% PBST, 1× 5 min  

PBST. They were blocked for at least 3 h in blocking buffer: 2% Blocking 

Reagent (Roche, 11 096 176 001) in maleate buffer (150 mM maleic acid,  

100 mM sodium chloride, pH 7.4). Finally, they were incubated overnight with 

anti-digoxigenin antibody coupled to alkaline phosphatase (Anti-Digoxigenin-

AP Fab Fragments, Roche 11 093 274 910), diluted 1:5,000 in blocking buffer 

at 4 °C with gentle agitation.

The following morning, the antiserum was removed and discarded, and 

excess antibody was removed by rinsing embryos 6× 15 min in PBST. They 

were transferred into staining buffer (100 mM Tris-HCl pH 9.5, 50 mM magne-

sium chloride, 100 mM sodium chloride, 0.1% Tween-20) by rinsing 3× 5 min.  

Staining reagent was introduced (225 µg/ml Nitro Blue Tetrazolium and  

175 µg/ml BCIP, Roche 11 383 213 001 and 11 383 221 001) and embryos were 

incubated in the dark, periodically checking their color development under a 

dissecting scope until the desired staining had been achieved (15 min–24 h). 

When the desired staining was achieved, the reaction was stopped by rinsing 

3× 5 min.

For single in situ hybridizations, the embryos were dehydrated by passing 

through a methanol dehydration series, then stored overnight at −20 °C. They 

were cleared by replacing the methanol with BB/BA (2 parts benzyl benzoate: 

1 part benzyl alcohol, Sigma-Aldrich) and imaged on a Zeiss Axioimager Z.1 

with a 10× objective (100× total magnification).

For double in situ hybridizations, after the first staining reaction, the first 

antibody was removed by washing embryos for 2× 5 min with agitation in 

0.1 M glycine-HCl pH 2.2, then rinsed 4× 5 min in PBST. The embryos were 

incubated overnight with anti-fluorescein-AP (Roche, 11 426 338 910) diluted 

1:2,500 in blocking buffer at 4 °C overnight. The next morning, the antiserum 

was removed and discarded, and the embryos were washed 6× 15 min in PBST. 

They were then stained as above, except that the Nitro Blue Tetrazolium and 

BCIP were replaced with INT/BCIP Stock solution (Roche) diluted 1:133 in 

staining buffer. They were incubated in the dark and occasionally monitored 

for color development (1 h–8 h), and the reaction was stopped by washing  

3× 5 min in PBST, then once in stop solution (50 mM phosphate buffer  

pH 5.8, 1 mM EDTA, 0.1% Tween-20). They were transferred to 80% glycerol 

and stored at 4 °C overnight to clear the embryos. They were imaged on the 

Zeiss Axioimager Z.1, as above.

Fluorescent in situ hybridization. Fluorescent double in situ hybridizations 

were performed essentially as described46. Embryos were collected from  

TL/AB in-crosses, dechorionated, cultured to 50% epiboly in agarose-covered 

dishes at 28 °C. They were fixed in 4% formaldehyde at 4 °C overnight. They 

were rinsed 2× 10 min with PBST (1× PBS + 0.1% Tween-20), passed through 

a methanol dehydration series (10 min each, 67% PBST:33% methanol, 33% 

PBST: 67% methanol), rinsed in methanol 2× 10 min, and permeabilized at 

−20° at least overnight. Embryos were rehydrated (10 min each, 75% metha-

nol:25% PBST, 50% methanol:50% PBST, 25% methanol:75% PBST, 4× 10 min 

PBST). Embryos were digested briefly in proteinase K (10 µg/ml, Bioline) for 

30 s, then washed 3× 5 min in PBST and refixed for 20 min in 4% formalde-

hyde at room temperature. They were rinsed 5× 5 min in PBST. Embryos were 

prehybridized in HM+ buffer (50% formamide, 5× SSC buffer, 0.1% Tween-20,  

citric acid to pH 6.0, 50 µl/ml heparin, 500 µg/ml tRNA) at 70 °C for at least  

2 h. Probes were normalized to 4 ng/µl per probe (digoxigenin - and fluorescein- 

incorporated) in HM+ buffer and denatured at 70 °C for 10 min.  

The prehybridization HM+ buffer was replaced by probe and embryos were 

incubated with probe overnight.

The next morning, probe mix was removed and returned to −20 °C for 

future re-use. Excess probe was removed with first a series of washes that 

had been prewarmed to 70 °C: 1× 10 min HM buffer (HM+ without heparin 

and tRNA), 1× 10 min 75% HM:25% 2× SSC, 1× 10 min 50% HM:50%  

2× SSC, 1× 10 min 25% HM, 75% 2× SSC, 1× 10 min 0.2× SSC, 1× 30 min  

0.2× SSC; then a series of room temperature washes: 1× 5 min 75%  

0.2× SSC:25% PBST, 1× 5 min 50% 0.2× SSC:50% PBST, 1× 5 min 25%  

0.2× SSC:75% PBST, 1× 5 min PBST. They were then blocked for at least 3 h 

in blocking buffer: 2% Blocking Reagent (Roche, 11 096 176 001) in maleate 

buffer (150 mM maleic acid, 100 mM sodium chloride, pH 7.4). Finally, 

they were incubated overnight with anti-fluorescein-HRP antibody (Anti-

Fluorescein-POD Fab Fragments, Roche 11 426 346 910), diluted 1:400 in 

blocking buffer at 4 °C with gentle agitation.

The following morning, the antiserum was removed and discarded, and 

excess antibody was removed by rinsing embryos 3× 25 min in PBST. They 

were then stained by incubating in 100 µl of Cy5 tyramide reagent diluted 

1:25 in amplification diluent (PerkinElmer TSA Plus Cyanine 5 System, 

NEL745001KT) for 45 min without agitation; this and all subsequent steps 

were done in the dark to protect fluorophores. Embryos were washed 3× 5 min  

in PBST. The remaining HRP antibody was inactivated by incubating in 1% 

hydrogen peroxide (VWR) in PBS for 20 min without agitation. Embryos 

were washed 3× 5 min in PBST. Antibody was removed by incubating in  

0.1 M glycine pH 2.2 for 20 min without agitation. Embryos were washed 

3× 5 min in PBST, then blocked in blocking buffer for at least 3 h at room 

temperature. They were incubated overnight at 4 °C with gentle agitation in 

1:500 anti-digoxigenin-POD (Anti-Digoxigenin-POD Fab Fragments, Roche 

11 207 733 910).

The following morning, the antiserum was removed and discarded, and 

excess antibody was removed by rinsing embryos 3× 25 min in PBST. They were 

stained by incubating in 100 µl of Cy3 tyramide reagent diluted 1:25 in ampli-

fication diluent (PerkinElmer TSA Plus Cyanine 3 System, NEL744001KT) 

for 45 min without agitation. Embryos were washed 8× 15 min in PBST and 

stored at 4 °C in PBST.

The in situ hybridizations were mounted in glass-bottom dishes in 1% low-

melting agarose. They were imaged on a Zeiss LSM700 point-scanning confocal 

microscope. Imaging of the two channels was performed sequentially at 1,024 ×  

1,024 pixel resolution with a 20×/0.50 NA objective set at zoom 0.6 (1.5996 

pixels per µm), and data were collected as 12-bit data with the photomultiplier 

tube set to gain 975, the pixel dwell-time at 1.272 and the pinhole set to 1 AU in 

the Cy3 channel. The sample was sequentially illuminated with 561 nm and 633 

nm lasers. There was no signal carryover from the Cy5 to the Cy3 channel, as 

aplnrb-expressing cells (aplnrb probe in Cy5) at the margin that are not part of 

the apoptotic-like population do not exhibit any fluorescence in the Cy3 chan-

nel. Images were cropped to a 10 z-slice stack (20 µm) in ImageJ, z-projected 

and contrasted using a linear range with fewer than 5% of pixels saturated.

Binary interpretation of colorigenic in situ hybridizations. Most of the  

in situ images scored were collected by searching the ZFIN Gene Expression 

Database (http://zfin.org/cgi-bin/webdriver?MIval=aa-xpatselect.apg) as well 

as other literature sources (Supplementary Table 1). Images were selected 

that were both from the animal pole orientation and lateral orientation in 

order to score expression accurately both around the embryonic margin and 

in the animal-vegetal axis. Scales were manually aligned to the in situ images 

that marked the defined bins—for lateral views, linear scales were used in the 

animal-vegetal and dorsal-ventral axes that had been corrected for spherical  

projection, and for animal views, a radial scale was used. In cases where  

fixation for in situ hybridization had caused the margin to be wavy, the animal-

vegetal scale was realigned to the margin in each bin. In other tissues, bins 

can be defined in any manner that can be scored in the images. They need 

not be similar in size or shape, nor do they need to be contiguous. They can 

be cubic, spherical or even arbitrarily shaped, depending on what accurately 

describes the tissue of interest.

When multiple images were available, they were taken into account (for 14 genes,  

a single image was used, for the other 33, two to seven images were used, as 

detailed in Supplementary Table 1). Each image was scored separately, and the 

patterns were compared. In cases where there was a discrepancy, if there was a 

clear mode (i.e., out of four pictures, three agreed and one did not), the mode 

was followed. Otherwise, the broader expression pattern was chosen.

Single-cell RNA-seq: reverse transcription. Single-cell lysates were trans-

ferred from the caps to the wells of the 96-well plate by first thawing the 

lysates at room temperature for 5 min and centrifuging in a tabletop centri-

fuge at 630g for 1 min. The lysate plate was transferred to an Agilent Bravo 
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automated liquid handling platform, which automated the following steps. 

Lysates were mixed with 11 µl (2.2×) of Agencourt RNAClean XP SPRI beads 

(Beckman-Coulter) and incubated at room temperature for 10 min. The lysate 

plate was transferred to a magnet (DynaMag-96 Side Skirted Magnet, Life 

Technologies), the supernatant was removed, and the beads were washed twice 

in 75 µl of 80% ethanol, with care being taken to avoid loss of beads during the 

washes. The ethanol was removed, and the beads were left to dry at room tem-

perature for 10 min. The beads were resuspended in 4 µl of Elution Mix (1 µl  

10 µM RT primer (5′-AGACGTGTGCTCTTCCGATCT(T)30VN-3′, IDT),  

1 µl 10 mM dNTP (Agilent), 0.1 µl SUPERaseIn RNase-Inhibitor (20 U/µl, Life 

Technologies) and 1.9 µl nuclease-free water). The plate was removed from the 

Bravo platform and the samples denatured at 72 °C for 3 min and placed imme-

diately on ice afterwards. The plate was placed back on the Bravo platform 

and 7 µl Reverse Transcription Mix (2 µl 5× RT buffer (Thermo Scientific), 

2 µl 5 M Betaine (Sigma-Aldrich), 0.9 µl 100 mM MgCl2 (Sigma-Aldrich), 

1 µl 10 µM TSO (5′-AGACGTGTGCTCTTCCGATCTNNNNNrGrGrG-3′, 
IDT), 0.25 µl SUPERaseIn RNase-Inhibitor (20 U/µl, Life Technologies),  

0.1 µl Maxima H Minus Reverse Transcriptase (200 U/µl, Thermo Scientific), 

and 0.75 µl nuclease-free water) were mixed with the resuspended beads. 

Reverse transcription was carried out by incubating the plate at 42 °C for 

90 min, followed by ten cycles of (50 °C for 2 min, 42 °C for 2 min) and heat 

inactivation at 70° for 15 min.

Single-cell RNA-seq: PCR pre-amplification. The plate was returned 

to the Bravo and 14 µl of PCR Mix (0.5 µl 10 µM PCR primer 

(5′AGACGTGTGCTCTTCCGATCT-3′, IDT), 12.5 µl 2x KAPA HiFi HotStart 

ReadyMix (KAPA Biosystems), 1 µl nuclease-free water) were added for a 

final PCR reaction volume of 25 µl. The reaction was carried out with an 

initial incubation at 98 °C for 3 min, followed by 18 cycles of (98 °C for  

15 s, 67 °C for 20 s, and 72 °C for 6 min) and a final extension at 72° for  

5 min. PCR products were purified using the Bravo by mixing with 20 µl (0.8×) 

Agencourt AMPureXP SPRI beads (Beckman-Coulter) and incubating for  

5 min at room temperature. The plate was placed on a magnet for 5 min, the 

supernatant was removed, and the beads were washed twice with 75 µl of 70% 

ethanol, with care being taken to avoid loss of beads during the washes. The 

ethanol was removed, and the beads were left to dry at room temperature for 

10 min. The beads were resuspended in 20 µl TE buffer (Teknova). The plate 

was placed on the magnet and supernatant containing the amplified cDNA was 

transferred to a new 96-well PCR plate. The concentration of amplified cDNA 

was measured on the Synergy H1 Hybrid Microplate Reader (BioTek) using 

High-Sensitivity Qubit reagent (Life Technologies), and the size distribution 

of select wells was checked on a High-Sensitivity Bioanalyzer Chip (Agilent). 

Expected quantification was around 0.5–2 ng/µl with size distribution sharply 

peaking around 2 kb.

Single-cell RNA-seq: library preparation. Library preparation was carried out 

using the Nextera XT DNA Sample Kit (Illumina) with custom indexing adapters,  

allowing 384 libraries to be simultaneously generated in a 384-well PCR plate. 

For each library, the amplified cDNA was normalized to 0.15–0.20 ng/µl.  

The tagmentation reaction consisted of 0.625 µl of cDNA mixed with  

1.25 µl Tagment DNA Buffer and 0.625 µl Tagment DNA enzyme mix. The  

2.5 µl reaction was incubated at 55 °C for 10 min. The reaction was quenched 

with 0.625 µl Neutralize Tagment Buffer and incubated at room temperature for  

5 min. The libraries were amplified by adding 1.875 µl Nextera PCR Master 

Mix, 0.625 µl 10 µM i5 adaptor (5′-AATGATACGGCGACCACCGAGATCTA

CAC(i5)TCGTCGGCAGCGTC-3′, IDT, where (i5) signifies the 8 bp i5 barcode 

sequence (see below for sequences), and 0.625 µl 10 µM i7 adaptor (5′-CAAGC

AGAAGACGGCATACGAGAT(i7)GTGACTGGAGTTCAGACGTGTGCTC

TTCCGATCTGGG-3′, IDT, where (i7) signifies the reverse-compliment of the 

8 bp i7 barcode sequence (see below for sequences). The PCR was carried out 

with an initial incubation at 72 °C for 3 min, 95 °C for 30 s, 12 cycles of (95 °C  

for 10 s, 55 °C for 30 s, 72 °C for 1 min) and a final extension at 72 °C for 5 min. 

Following PCR, 2 µl of each library were pooled in a 1.5 ml microcentrifuge 

tube. The pool was mixed with 690 µl (0.9×) Agencourt AMPureXP SPRI 

beads (Beckman-Coulter) and incubated at room temperature for 5 min. The 

pool was placed on a magnet (DynaMag-2, Life Technologies) and incubated 

for 5 min. The supernatant was removed, and the beads were washed twice 

in 1 ml of 70% ethanol. The ethanol was removed and the beads left to dry 

at room temperature for 10 min. The beads were resuspended in 50 µl of 

nuclease-free water. The tube was returned to the magnet, and the supernatant  

was transferred to a new 1.5 ml microcentrifuge tube. The concentration of 

the pooled libraries was measured using the High-Sensitivity DNA Qubit 

(Life Technologies), and the size distribution measured on a High-Sensitivity 

Bioanalyzer Chip (Agilent). Expected concentration of the pooled libraries 

was 10–30 ng/µl with size distribution of 300–700 bp.

i5 barcodes: AAGTAGAG, ACACGATC, TGTTCCGA, CATGATCG, CGT 

TACCA, TCCTTGGT, AACGCATT, ACAGGTAT, AGGTAAGG, AACA 

ATGG, ACTGTATC, AGGTCGCA, GGTCCAGA, CATGCTTA, AGGATCTA, 

TCTGGCGA, AGGTTATC, GTCTGATG, CCAACATT, CAACTCTC, ATTC 

CTCT, CTAACTCG, CTGCGGAT, CTACCAGG.

i7 barcodes: CTACCAGG, CATGCTTA, GCACATCT, TGCTCGAC, AGCA 

ATTC, AGTTGCTT, CCAGTTAG, TTGAGCCT, ACCAACTG, GGTCCAGA, 

GTATAACA, TTCGCTGA, AACTTGAC, CACATCCT, TCGGAATG, AAG 

GATGT.

Single-cell RNA-seq: read processing, alignment and gene quantification. 

We sequenced our single-cell libraries on a HiSeq 2500 (Illumina) in rapid-

run mode, obtaining an average of 530,000 paired-end reads per library. We 

sequenced 25 bp on the first read and 33 bp on the second read, as the first 

eight bases of the second read consist of (i) a 5 bp random molecular tag 

(RMT) and (ii) a GGG sequence introduced to the 5′ end of a transcript during 

template switching. We trimmed the first 8 bp from Read 2, leaving us with 

paired-end 25 bp reads, although we maintained a separate database linking 

each read-pair to its accompanying RMT.

To map reads, we modified the Zv9 reference transcriptome, as our reads 

were expected to originate from the 5′ end of each mRNA molecule, which 

could cause problems if the reference gene models had an incorrect annotation 

for the transcription start site (TSS). To address this, we extended the TSS for 

all Zv9 genes by 100 bases upstream to allow for minor fluctuations. We then 

aligned read-pairs directly to this modified reference transcriptome, using 

Bowtie with the following parameters: -q–phred33-quals -n 2 -l 25 -I 1 -X 

2000 -a -m 200. As expected, following mapping, our reads overwhelmingly 

originated from near the TSS.

To quantify gene expression, we leveraged the 5 bp Random Molecular 

Tags (RMTs) that were associated with each sequencing read pair. For each 

annotated gene in Zv9, we identified all read-pairs that mapped to the correct 

strand and collected each of the 5 bp RMTs that were associated with these 

reads. We collapsed duplicate RMT sequences together to calculate the number 

of distinct RMTs associated with each gene. We quantified gene expression  

for 1,152 single-cell libraries and identified a subset of 207 failed/low- 

quality libraries with poor transcriptome complexity (<2,000 genes detected 

per cell). After excluding these (remaining data set of 945 cells), on average, 

we identified 47,000 unique molecules per sequencing library, corresponding 

to the detection of 3,400 genes per single cell.

To account for differences in the total number of molecules sequenced per 

library, we normalized Random Molecular Tags (RMTs) counts from each  

single cell by dividing by the total number of RMTs detected in that cell. 

Although these numbers are often multiplied by 1 × 106 (i.e., transcripts-per-

million), we reasoned that a single cell was unlikely to contain one million 

transcripts. As we detected a maximum number of 135,000 UMIs across all 

the cells in our data set, we chose to multiply by 200,000 (i.e., transcripts-per-

200,000 reads), but note that this scaling factor largely represents a consistent 

increase or decrease across all positive values in our data set. All downstream 

calculations were performed in log-space.

Identification of highly variable genes. To increase the power of unsuper-

vised dimensional reduction techniques, we first identified the set of genes 

that was most variable across our single-cell data set, after controlling for the 

relationship between mean expression and variability. We calculated the mean 

and a dispersion measure (variance/mean) for each gene across all single cells, 

and placed genes into 20 bins based on their average expression. Within each 

bin, we then z-normalized the dispersion measure of all genes within the bin 

to identify genes whose expression values were highly variable even when 

compared to genes with similar average expression. We used a z-score cutoff 
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of 2 to identify 160 significantly variable genes, after excluding genes with very 

low average expression, or genes whose variability was explained primarily by 

differences between experimental batches. As expected, our highly variable 

genes consisted primarily of developmental and spatially regulated factors 

whose expression levels are expected to vary across the dissociated cells.

Principal components analysis. We ran principal components analysis (PCA) 

as previously described8, using the prcomp function in R, after scaling and 

centering the data. We used only the previously identified ‘highly variable’ 

genes as input to the PCA to ensure robust identification of the primary struc-

tures in the data. However, as this encompassed only 160 genes, we extended 

the results of this analysis globally by projecting the PCA rotation matrix 

across the entire transcriptome. This additional projection does not enable us 

to discover new structures or patterns that are not present within the 160-gene 

PCA, but it does allow us to identify other genes with strong PCA loadings that 

may not have passed our stringent test for single-cell variation.

Identification of EVL cells. When we ran PCA on the full data set of  

945 cells, we observed that the second principal component was strongly 

defined by canonical markers for the embryonic enveloping layer (EVL), 

an epidermal shell that coats the embryo at this stage. We removed the cells 

through visual inspection and annotation of a PCA plot, resulting in a final 

data set of 851 single cells that was used as input to Seurat. After removal of 

the EVL cells, we recalculated the list of highly variable genes using the same 

procedure described above.

Constructing models of gene expression (data imputation). Seurat leverages 

a spatial reference map consisting of a relatively small number of landmark 

genes in order to guide the inference of spatial origin. Single-cell measure-

ments for a single gene, however, are inherently noisy, with extensive variability 

stemming from both biological and technical sources21,22. These sources of 

noise can introduce considerable error into the reconstruction process, where 

substantial value is placed upon the measurement of landmark genes.

To address this, we reasoned that instead of relying only on the meas-

urements of the landmark genes, we could use our full RNA-seq profiles to 

improve our spatial inference. For example, the gene osr1 is a member of our 

spatial reference map and is known to be expressed in a tight band around 

the embryonic margin. Suppose we examine cell X, which is truly located at 

the margin, but where expression of osr1, either due to biological or technical 

noise, is detected at low level. However, other genes that are specific to the 

embryonic margin are highly expressed in cell X, consistent with its spatial 

origin. In this case, cell X’s overall gene expression profile predicts a high level 

of osr1 expression, strongly suggesting that the measured value represents a 

technical error. Importantly, it is not necessary to know beforehand which 

other genes are expressed with osr1, nor any spatial information, as these genes 

can be directly identified based on their power to predict osr1 expression.

Thus, for each of the landmark genes, we constructed a linear model of 

single-cell expression for that gene, based on the measured values of all highly 

variable (z-score greater than two, see above) or ‘structured’ genes in the data 

set (genes with statistically significant loading scores, P < 10−5) for the first 

three principal components). We determined the set of genes with a signifi-

cant PCA loading using a randomization approach (‘jack straw’) proposed 

by Chung and Storey47 and which we have previously applied to single-cell 

RNA-seq data29.

In principle, we could have many more predictive genes than cells, and 

so to avoid overfitting, we built L1-constrained models of gene expression 

using the LASSO technique, as implemented in the lars package in R. The 

LASSO algorithm requires a user-specified L1-constraint. While in principle  

this learning parameter could be set separately for each gene, we imposed a 

uniform parameter across all genes (n = 40 in the lasso.fit function, empiri-

cally determined). We then constructed a separate matrix of ‘imputed’ 

measurements for each of our landmark genes across all single cells. We 

note that although we use the LASSO approach here, Seurat’s downstream 

analysis is widely compatible with any modeling or prediction technique, and  

we believe that implementing tailored machine-learning approaches to  

ameliorate technical noise in single-cell data sets represents a promising 

direction for future work.

Mixture model fitting to translate between RNA in situ hybridization and 

RNA-seq data. Although our spatial reference map consisted of binary values 

for the landmark genes, our imputed measurements were on a continuous 

scale, and thus we needed a mapping to relate these two types of data. We 

reasoned that the bimodal distribution that characterized the imputed meas-

urements represented an ‘on’ and ‘off ’ mode of gene expression across single 

cells. Thus, we independently fit the distribution of imputed values for each 

landmark gene as a mixture of two Gaussian distributions, implemented using 

the normalmixEM function in the mixtools R package, with two modifications. 

First, in order to ensure coherence between the RNA-seq and the RNA in situ 

hybridization data, we constrained the mixing parameter to be equal to the 

percentage of bins represented in the ‘on’ state in the binarized in situ patterns. 

Second, our mixture models effectively divide cells into two clusters based 

on their imputed expression of a single landmark gene. To ensure that this 

subdivision was consistent with our overall data structure, we implemented 

one additional heuristic step, similar to a single step in a ‘greedy’ k-means 

approach. We calculated the cluster-means (vector representing the average  

expression of all highly variable or ‘significantly structured’ genes across  

n single cells in either the ‘on’ or the ‘off cluster’), calculated the L2 distance  

of each cell to the two cluster means, and reassigned cells to the closest population.  

Effectively, this step allowed a small number of cells to ‘flip’ between the on  

and off subpopulations in a manner that was consistent with the overall  

structure in the data, and we found that this improved the robustness of our 

mixture model fitting. Seurat then estimates the normal density parameters of 

the two modes by calculating the mean and variance of the imputed values.

Probabilistic inference of spatial origin. Seurat leverages the spatial reference 

map and mixture models to build individual models of gene expression for 

each of the 64 bins. Specifically, Seurat models the imputed expression values 

across all landmark genes as a multivariate normal distribution, and therefore 

builds 64 distinct multivariate normal models. For our initial models, Seurat 

makes two simplifying assumptions to limit the resulting complexity. First, we 

assume that within a bin, imputed expression levels of the different landmark 

genes are independent of each other. This means that the off-diagonal elements 

of all covariance matrices are 0. Second, given the binary nature we have cho-

sen for the input, we assume that for any given landmark gene, the mean and 

variance parameters can each take one of two possible values, taken directly 

from the mixture model, and depending on whether the gene is ‘on’ or ‘off ’ in 

this bin in the spatial reference map. These assumptions strongly simplify the 

model, and result in extensive parameter sharing across all 64 bins.

Once these models have been estimated, Seurat examines the imputed land-

mark expression values for a cell and calculates the likelihood that these values 

originated from each of the 64 bins using the dmvnorm function (mixtools48 pack-

age in R). As the prior probability that a cell originated from any of the 64 bins  

is uniform, the likelihood is directly proportional to the posterior probability. 

Thus, Seurat calculates the posterior probability that a cell originated from 

each of 64 bins. These individual probabilities are retained, but also summa-

rized to a single location by calculating the spatial centroid (specifically, the 

center of mass) of the spatial probability map. We therefore calculated spatial 

centroids for all 851 single cells in our data set.

Both of the assumptions made here do not perfectly reflect the biological 

nature of the zebrafish embryo at 50% epiboly. At this stage, developmental 

patterning genes often do not exhibit an exclusively binary expression pattern,  

but are often expressed at multiple different levels. Given the binary nature 

of our input spatial reference map, our initial models require the mean and 

variance parameters in each bin to take one of only two possible parame-

ter values across the embryo. Second, assuming independent expression of  

the landmark genes is not well-justified. Many of these genes are likely to be 

co-regulated and to exhibit correlated expression even within a bin, particu-

larly as Seurat considers imputed gene expression values.

To extend our initial models we wished to remove the assumption of  

independence between genes, and to estimate mean and variance parameters 

separately for each cell and each bin. In order to estimate a valid covariance 

matrix for n landmark genes for an individual bin, we needed data from at 

least n cells (we use 2n in practice) that were representative of that bin. We 

reasoned that we could use our initial mapping of 851 spatial centroids (above) 

to identify these cells, and therefore to estimate these parameters.
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We implemented the following procedure for each bin. (i) We calculated 

the L2 distance for each of the 851 spatial centroids to the center of the  

specified bin. (ii) We selected the 2n cells that had the lowest L2 distance 

(where n is the number of landmark genes) and were likely to be close in space 

to the bin. (iii) We used these cells to estimate a vector of n means as well as 

an n × n covariance matrix specific to each bin. At the end of this procedure, 

we had constructed 64 new multivariate normal models. As before, we then 

used Seurat to calculate the likelihood that a cell originated from each of these 

bins, given these updated models.

We note that the cells selected as ‘closest’ to each bin may not be unique 

for each of the 64 bins, and some cells are therefore likely to contribute to the 

estimated models for multiple bins. This represents a smoothing across the 

embryo that is similar to a sliding window, particularly when the number of 

landmark genes is high. For example, computing covariance matrices for the 

47 landmark genes in our original reference map would require 100 cells per 

bin, which is not available in our current scale of data. Thus, we aimed to 

most efficiently choose a new set of landmark genes. Notably, as we already 

had a preliminary spatial mapping, we were no longer restricted to choosing 

genes that were part of the original spatial reference set. We reasoned that the 

most informative genes would be those that had the strongest loadings in a 

PCA, and therefore selected an n of 18 genes (three genes with the highest 

and lowest loadings for each of three principal components) to use as input 

for this analysis.

Evaluating Seurat’s performance. We examined a control experiment con-

sisting of cells from a modified dissociation and dissection procedure, which 

strongly depletes cells from the animal cap and therefore enriches for the 

embryonic margin. We calculated the centroid (defined as the center of mass of 

Seurat’s inferred probability mapping), of both enriched and nonenriched cells, 

and compared the percentage of cells that mapped to each tier-bin (1–8)— 

calculating the enrichment (fold-change) for the margin-enriched compared 

to the randomly dissociated cells.

We further tested Seurat’s performance by examining 28 ‘reference cells’ 

which were manually isolated under a dissection microscope, and whose 

spatial origin is approximately known. For each reference cell, we compared 

Seurat’s inferred origin with its experimentally measured spatial location. As 

Seurat assigns cells to an origin probabilistically, we wanted to reflect any 

uncertainty in our error measurements. For every reference cell, we examined  

all bins where Seurat assigned the cell with nonzero posterior probability 

and constructed a posterior probability-weighted distance metric, weighting  

the distance between the inferred bin and the measured bin by the posterior 

probability of assignment.

Additionally, we used Seurat to infer spatial patterns for genes with known 

expression patterns (i.e., the landmark genes). Specifically, for each landmark 

gene G, we performed the following process.

a. We removed G from the spatial reference map, leaving a total of 46 genes 

remaining in the map.

b. We reran Seurat on the input data. In this case, the localization of G 

was not known to Seurat, and could not influence downstream inferences. 

For all bins Bi, i = 1.64, and cells Cj, j = 1.851, Seurat calculates the posterior 

probability:

P P C Bi j j i, ( )= ∈

c. We ‘inferred’ the spatial localization of G given Seurat’s posterior infer-

ences. Our inferred in situ represents a probability-weighted estimate of gene 

expression across the entire embryo. Specifically for all bins Bi, i = 1.64, we 

calculated the expression level of gene G in the bin as:

G P M G CB i j
j

N

ji
= ∗

=
∑ , [ , ]

1

where M is the measured expression matrix and M(G,Cj) represents the non-

logged expression level of gene G in cell Cj. Note that for the evaluation of all 

final in situ patterns, we used the measured (nonimputed) estimates of gene 

expression in this inference. Thus, the imputed values help to guide individual 

cells to their correct spatial origin (i.e., to calculate Pi,j), but the inferred in situ 

patterns in Figures 3f, 4b, 5d and Supplementary Figure 5 use the measured 

(nonimputed) values for M.

d. We tested whether our inferred expression levels were sufficient to  

correctly classify the binarized landmark in situ pattern. We assayed the  

accuracy of this classification using an ROC curve.

Determination of archetypal patterns of gene expression. Seurat’s spatial 

inferences enable us to not only re-infer spatial patterns for the landmark 

genes, but also to create computational in situ patterns for any gene detected 

in our RNA-seq data. We therefore inferred spatial patterns for all genes that 

were likely to exhibit spatially restricted expression patterns across our data set. 

Specifically, we took all genes that displayed weak evidence of being variable 

across our single cells (see ‘Identification of highly variable genes’, though here 

we applied a z-score cutoff of 1 instead of 2) and added all genes exhibiting 

‘significant’ loadings of the first five principal components using a Bonferroni-

corrected P-value of 0.01. Finally, we removed genes that were detected in less 

than 20 cells in the overall data set, as they may present strong spatial patterns 

that are simply the result of aberrant expression in a very small number of cells, 

leaving us with 2,190 remaining genes. We then inferred the spatial localiza-

tion patterns of all these genes. As our goal at this stage was to identify broad 

clusters of spatial gene patterning, we inferred spatial patterns using imputed 

measurements for each of these genes to ameliorate technical noise.

We further examined these 2,190 patterns to search for genes whose expres-

sion patterns exhibited significant spatial variability across the embryo.  

To accomplish this, we calculated a ‘spatial CV’ for each gene, by calculating  

the coefficient of variation of its expression levels across all 64 bins. We  

identified 290 genes with a CV greater than 0.25, implying spatial heteroge-

neity. We chose this cutoff because it excluded known housekeeping genes  

(e.g., ribosomal proteins) from further analysis, as these genes are unlikely to 

be heavily spatially patterned.

We next performed k-means clustering on the remaining 290 patterns. 

Specifically, the input for the k-means clustering was a 290 × 64 matrix, con-

taining the expression level of all 290 genes in each of the 64 spatial bins. We 

used a k = 9, as this was the largest value of k for which we observed distinct 

and nonoverlapping clusters9. The nine clusters represent ‘archetypes’ of gene 

expression, namely, broad spatial patterns representing clusters of similarly 

localized genes.

Downsampling (power) analyses. In order to test the number of landmark 

genes required for a spatial reference map, we remapped cells using only 

subsets of the landmark gene set in our study. Our baseline was remapping 

the cells using 46 of the 47 landmarks that were included in our archetypal 

analysis, without the optional quantitative refinement step. We then randomly 

selected 2, 4, 6 or all 9 of the archetypes and selected evenly across the chosen 

archetypes to produce a final set of 2–45 landmark genes. Although we selected 

evenly from the different archetypes, some archetypes had fewer landmarks 

than others; thus, in many cases, there are fewer genes from one archetype than 

another, if we had selected all of the landmarks present from a given archetype. 

After choosing the limited set of archetypes, we remapped cells and compared 

the mean change in centroid position, as Euclidian distance, in terms of bins, 

and the sum of the change in posterior probabilities.

In order to assess the effect of redundant landmarks more directly, we chose 

two sets of 4 landmarks that had identical binary input patterns. One set (osr1, 

mixl1, ndr1 and ndr2) were expressed narrowly around the embryo in the 

two bins closest to the margin, and the other set (ta, ism1, sebox and tbx16) 

were expressed more broadly around the embryo in the four bins closest to 

the margin. Thus, these patterns defined a total of three bins (one defined 

by the absence of genes from either set, another defined by the expression of 

the broader set but absence of the narrower set, and a final bin defined by the 

expression of both the broader and narrower set). As a baseline, we calculated 

the posterior probabilities using the full set of 47 landmarks, without quantita-

tive refinement, and then summed probabilities from the smaller bins to create 

the three large bins. We then remapped cells using every combination of one, 

two, three or four landmarks from each set and measured the total change in 

posterior probabilities.
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Identification and characterization of embryonic subpopulations. We used 

a combination of supervised and unsupervised analyses to identify rare and 

functionally coherent subpopulations in the developing zebrafish embryo. 

To identify cells representing progenitors for the prechordal plate and  

the endoderm, we first used Seurat’s spatial mappings to identify all cells  

in the three (out of eight) spatial tiers closest to the embryonic margin,  

corresponding to a total of 252 cells. We then performed an unbiased  

PCA of these cells, and performed k-means clustering for genes that were 

significantly associated with the three principal components (jack straw,  

P < 10−5). We identified two distinct clusters of cells from the k-means  

analysis. Cells from these clusters were also clearly distinguished by the  

second and third principal components, as well as by the expression patterns 

of known marker genes (e.g., gsc and sox32), enabling us to identify these  

cells as either prechordal plate or endoderm progenitors. A similar PCA 

analysis, conducted over all 851 cells in the data set, identified a separate 

subpopulation strongly distinguished by the fourth principal component 

(‘Apoptotic-like’ cells, Supplementary Fig. 6f).

To identify markers that were enriched for the prechordal plate  

progenitors and the ‘apoptotic-like’ cells, we implemented a likelihood-ratio 

test (LRT) for single-cell differential expression49. Importantly, this test  

is designed to simultaneously test for changes in both the percentage of  

cells expressing a gene, as well as the quantitative RNA levels with  

these cells. All differential expression testing was performed on measured 

(nonimputed) values.

For Gene Ontology analysis of ‘apoptotic-like’ markers, we took all genes 

with a Bonferroni-corrected LRT P-value < 0.01 and used this list for Gene 

Set Enrichment Analysis50.

Seurat package. Seurat is available as an open-source software package in R, 

and is available as the Supplementary Code. In addition, clear documentation 

(R markdown files) showing the commands and output for the analysis of this 

data set are included in the Supplementary Note.
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